Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;29(31):4217-26.
doi: 10.1016/j.biomaterials.2008.07.024. Epub 2008 Aug 9.

The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds

Affiliations

The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds

Alexander Hofmann et al. Biomaterials. 2008 Nov.

Abstract

Angiogenesis is a key element in early wound healing and is considered important for tissue regeneration and for directing inflammatory cells to the wound site. The improvement of vascularization by implementation of endothelial cells or angiogenic growth factors may represent a key solution for engineering bone constructs of large size. In this study, we describe a long-term culture environment that supports the survival, proliferation, and in vitro vasculogenesis of human umbilical vein endothelial cells (HUVEC). This condition can be achieved in a co-culture model of HUVEC and primary human osteoblasts (hOB) employing polyurethane scaffolds and platelet-rich plasma in a static microenvironment. We clearly show that hOB support cell proliferation and spontaneous formation of multiple tube-like structures by HUVEC that were positive for the endothelial cell markers CD31 and vWF. In contrast, in a monoculture, most HUVEC neither proliferated nor formed any apparent vessel-like structures. Immunohistochemistry and quantitative PCR analyses of gene expression revealed that cell differentiation of hOB and HUVEC was stable in long-term co-culture. The three-dimensional, FCS-free co-culture system could provide a new basis for the development of complex tissue engineered constructs with a high regeneration and vascularization capacity.

PubMed Disclaimer

Publication types

LinkOut - more resources