Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Dec 1;76(11):1485-9.
doi: 10.1016/j.bcp.2008.07.017. Epub 2008 Jul 23.

Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis

Affiliations
Review

Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis

Wenge Li et al. Biochem Pharmacol. .

Abstract

Oxidative stress has been implicated in the etiology of neurodegenerative disease, cancer and aging. Indeed, accumulation of reactive oxygen and nitrogen species generated by inflammatory cells that created oxidative stress is thought to be one of the major factor by which chronic inflammation contributes to neoplastic transformation as well as many other diseases. We have recently reported that mice lacking nuclear factor-erythroid 2-related factor 2 (Nrf2) are more susceptible to dextran sulfate sodium (DSS)-induced colitis and colorectal carcinogenesis. Nrf2 is a basic leucine zipper redox-sensitive transcriptional factor that plays a center role in ARE (antioxidant response element)-mediated induction of phase II detoxifying and antioxidant enzymes. We found that increased susceptibility of Nrf2 deficient mice to DSS-induced colitis and colorectal cancer was associated with decreased expression of antioxidant/phase II detoxifying enzymes in parallel with upregulation of pro-inflammatory cytokines/biomarkers. These findings suggest that Nrf2 may play an important role in defense against oxidative stress possibly by activation of cellular antioxidant machinery as well as suppression of pro-inflammatory signaling pathways. In addition, in vivo and in vitro data generated from our laboratory suggest that many dietary compounds can differentially regulate Nrf2-mediated antioxidant/anti-inflammatory signaling pathways as the first line defense or induce apoptosis once the cells have been damaged. In this review, we will summarize our thoughts on the potential cross-talks between Nrf2 and NFkappaB pathways. Although the mechanisms involved in the cross-talk between these signaling pathways are still illusive, targeting Nrf2-antioxidative stress signaling is an ideal strategy to prevent or treat oxidative stress-related diseases.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Chronic colon colitis model. AOM/DSS treatments induce colon colitis via activating NFκB-mediated pro-inflammatory pathway. Prolonged colon colitis promotes neoplastic transformation. Pretreatment with chemopreventive compounds such as PEITC, SFN, DBM and CUR alone or in combine can considerably ameliorate colon carcinogenesis either by the induction of Nrf2-mediated antioxidant response to attenuate oxidative stress or by suppressing NFκB-mediated inflammatory response.

References

    1. Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004;10:549–57. - PubMed
    1. Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol. 2004;24:8477–86. - PMC - PubMed
    1. Furukawa M, Xiong Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol. 2005;25:162–71. - PMC - PubMed
    1. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 2004;24:7130–9. - PMC - PubMed
    1. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol. 2004;24:10941–53. - PMC - PubMed

Publication types