Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Oct;18(5):544-50.
doi: 10.1016/j.sbi.2008.06.010. Epub 2008 Aug 26.

Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea

Affiliations
Review

Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea

Mehtap Abu-Qarn et al. Curr Opin Struct Biol. 2008 Oct.

Abstract

Of the many post-translational modifications proteins can undergo, glycosylation is the most prevalent and the most diverse. Today, it is clear that both N-glycosylation and O-glycosylation, once believed to be restricted to eukaryotes, also transpire in Bacteria and Archaea. Indeed, prokaryotic glycoproteins rely on a wider variety of monosaccharide constituents than do those of eukaryotes. In recent years, substantial progress in describing the enzymes involved in bacterial and archaeal glycosylation pathways has been made. It is becoming clear that enhanced knowledge of bacterial glycosylation enzymes may be of therapeutic value, while the demonstrated ability to introduce bacterial glycosylation genes into Escherichia coli represents a major step forward in glyco-engineering. A better understanding of archaeal protein glycosylation provides insight into this post-translational modification across evolution as well as protein processing under extreme conditions. Here, we discuss new structural and biosynthetic findings related to prokaryotic protein glycosylation, until recently a neglected topic.

PubMed Disclaimer

Publication types

LinkOut - more resources