Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Apr;109(4):609-15.
doi: 10.1093/oxfordjournals.jbchem.a123428.

Conformational change of the foot protein of sarcoplasmic reticulum as an initial event of calcium release

Affiliations
Free article

Conformational change of the foot protein of sarcoplasmic reticulum as an initial event of calcium release

T Ohkusa et al. J Biochem. 1991 Apr.
Free article

Abstract

Heavy sarcoplasmic reticulum vesicles were labeled with the thiol-reacting fluorescent probe N-(7-dimethylamino-4-methyl-4-coumarinyl)maleimide (DACM), and the DACM-labeled foot protein moiety was purified. The fluorescence intensity of the DACM attached to the foot protein decreased by the addition of low (activating) concentrations of ryanodine, while it increased at higher (inhibitory) concentrations, suggesting that the lower fluorescence represents the active state of the foot protein, while the higher fluorescence, its inactive state. Under conditions that induce Ca2+ release from SR (Ca2+ jump, addition of Ca2+ release inducing reagents such as caffeine and polylysine), the fluorescence intensity of the protein-attached DACM decreased rapidly (e.g. k congruent to 70 s-1 under optimum conditions). The initial rate of Ca2+ release from the DACM-labeled SR showed a close correlation with the amplitude of the fluorescence change of the foot protein-attached DACM under variety of conditions; e.g. in the presence of Ca2+, polylysine, ATP, and ruthenium red, etc. The fluorescence change of the foot protein was much faster than Ca2+ release from SR under a variety of conditions of Ca2+ release. We propose that the binding of release triggering reagents to the foot protein induces a rapid conformational change, which in turn regulates Ca2+ release.

PubMed Disclaimer

Similar articles

Cited by

Publication types