Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Sep;17(5):519-25.
doi: 10.1097/MNH.0b013e32830dd580.

Mechanism of regulation of renal ion transport by WNK kinases

Affiliations
Review

Mechanism of regulation of renal ion transport by WNK kinases

Chou-Long Huang et al. Curr Opin Nephrol Hypertens. 2008 Sep.

Abstract

Purpose of review: This review summarizes recent advances in the understanding of the mechanism of regulation of renal ion transport by WNK kinases.

Recent findings: There are four mammalian WNK [with-no-lysine (K)] kinases: WNK1-WNK4. Mutations of WNK1 and WNK4 in humans cause hypertension and hyperkalemia at least partly by altering renal sodium and potassium transport. WNK1 and WNK4 stimulate endocytosis of ROMK1 by recruiting an endocytic scaffold protein, intersectin. The recruitment is independent of the kinase activity and occurs between the PXXP motif of WNKs and the SH3 domain of intersectin. Regulation of cation-chloride-coupled cotransporters, Na+-K+-2Cl(-) cotransporter (NKCC) 1 and NKCC2 [and the Na-Cl co-transporter (NCC), under some conditions] by WNKs requires kinase activity. WNK1 and WNK4 bind with and phosphorylate two Ste20-related protein kinases, OSR1 and SPAK, which in turn bind with and phosphorylate NKCCs and NCC to increase their activity. Binding of OSR1/SPAK to upstream activators (WNKs) and downstream substrates (NKCCs and NCC) are both mediated by a docking site in the C-terminus of OSR1/SPAK and RFX[V/I] motifs present in WNKs or in NKCCs and NCC.

Summary: WNKs regulate ion transport via both catalytic and noncatalytic mechanisms. We discuss hypotheses that WNKs, contrasting with aldosterone, play important roles in dissociating sodium reabsorption from potassium secretion.

PubMed Disclaimer

Publication types

MeSH terms