Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Aug 13;3(8):e2921.
doi: 10.1371/journal.pone.0002921.

Safety and immunogenicity of the candidate tuberculosis vaccine MVA85A in West Africa

Affiliations

Safety and immunogenicity of the candidate tuberculosis vaccine MVA85A in West Africa

Roger H Brookes et al. PLoS One. .

Erratum in

  • PLoS One. 2011;6(2). doi:10.1371/annotation/5284a0b6-62a9-484e-80a4-a08c59b3b17c

Abstract

Background: Vaccination with a recombinant modified vaccinia Ankara expressing antigen 85A from Mycobacterium tuberculosis, MVA85A, induces high levels of cellular immune responses in UK volunteers. We assessed the safety and immunogenicity of this new vaccine in West African volunteers.

Methods and findings: We vaccinated 21 healthy adult male subjects (11 BCG scar negative and 10 BCG scar positive) with MVA85A after screening for evidence of prior exposure to mycobacteria. We monitored them over six months, observing for clinical, haematological and biochemical adverse events, together with assessment of the vaccine induced cellular immune response using ELISPOT and flow cytometry. MVA85A was well tolerated with no significant adverse events. Mild local and systemic adverse events were consistent with previous UK trials. Marked immunogenicity was found whether individuals had a previous BCG scar or not. There was not enhanced immunogenicity in those with a BCG scar, and induced T cell responses were better maintained in apparently BCG-naïve Gambians than previously studied BCG-naïve UK vaccinees. Although responses were predominantly attributable to CD4+ T cells, we also identified antigen specific CD8+ T cell responses, in subjects who were HLA B-35 and in whom enough blood was available for more detailed immunological analysis.

Conclusions: These data on the safety and immunogenicity of MVA85A in West Africa support its accelerated development as a promising booster vaccine for tuberculosis.

Trial registration: ClinicalTrials.gov NCT00423839.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: RHB has a patent relating to ex vivo ELISPOT licensed through Oxford University. AH and HM are named inventors on a composition of matter patent for MVA85A filed by the University of Oxford. There are no other conflicts of interest

Figures

Figure 1
Figure 1. Timeline for vaccination and blood sampling schedules.
A. BCG scar negative subjects. B. BCG scar positive subjects.
Figure 2
Figure 2. Median Ex-vivo interferon-gamma ELISPOT responses to Ag85A protein, PPD-T and Ag85A overlapping peptides after MVA85A vaccination in healthy male volunteers.
A. BCG scar negative vaccines (n = 11); B. BCG scar positive vaccinees (n = 10).
Figure 3
Figure 3. CD8+ and CD4+ T cell responses. A.
Short term cell lines specific for p23 were generated using PBMC recovered 28 days after vaccination and specificity demonstrated by flow cytometry. Gating on IFN-γ detection, both CD4 and CD8 responses were observed for one subject (volunteer 1) while for the other subject (volunteer 2) an exclusive CD8 response was identified. B. Volunteer 2 also showed CD4 and CD8 activation by CD69 expression after stimulation with pooled Ag85A peptides 28 days after vaccination.

References

    1. Dye C, Watt CJ, Bleed DM, Hosseini SM, Raviglione MC. Evolution of tuberculosis control and prospects for reducing tuberculosis incidence, prevalence, and deaths globally. JAMA. 2005;293:2767–2775. - PubMed
    1. Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet. 2006;367:1173–1180. - PubMed
    1. Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA. 1994;271:698–702. - PubMed
    1. Black GF, Weir RE, Floyd S, Bliss L, Warndorff DK, et al. BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet. 2002;359:1393–1401. - PubMed
    1. Brandt L, Feino Cunha J, Weinreich Olsen A, Chilima B, Hirsch P, et al. Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect Immun. 2002;70:672–678. - PMC - PubMed

Publication types

Associated data