Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 May;65(5):1042-54.
doi: 10.1152/jn.1991.65.5.1042.

Convergence of phrenic and cardiopulmonary spinal afferent information on cervical and thoracic spinothalamic tract neurons in the monkey: implications for referred pain from the diaphragm and heart

Affiliations

Convergence of phrenic and cardiopulmonary spinal afferent information on cervical and thoracic spinothalamic tract neurons in the monkey: implications for referred pain from the diaphragm and heart

D C Bolser et al. J Neurophysiol. 1991 May.

Abstract

1. Spinothalamic tract (STT) neurons in the C3-T6 spinal segments were studied for their responses to stimulation of phrenic and cardiopulmonary spinal afferent fibers. A total of 142 STT neurons were studied in 44 anesthetized, paralyzed monkeys (Macaca fascicularis). All neurons were antidromically activated from the ventroposterolateral nucleus and/or medial thalamus. 2. Electrical stimulation of phrenic afferent fibers (PHR) excited 43/58 (74%), inhibited 2/58 (3%), and did not affect 13/58 (13%) of cervical STT neurons. Neurons with excitatory somatic fields confined to the proximal limb or encompassing the whole limb were excited to a significantly greater extent by electrical stimulation of PHR than were neurons with somatic fields confined to the distal limb. Mechanical stimulation of PHR by probing the exposed diaphragm excited 11/22 (50%), inhibited 3/22 (14%), and did not affect 8/22 (36%) cervical STT neurons. 3. The technique of minimum afferent conduction velocity (MACV) was used to obtain information about the identity of the PHR that excited 35 cervical STT neurons. Evidence was obtained for excitation of these neurons by group II and III PHR. The mean +/- SE MACV for all neurons was 14 +/- 2 m/s. 4. Electrical stimulation of cardiopulmonary spinal afferent fibers excited 41/57 (72%), inhibited 8/57 (14%), and did not affect 8/57 (14%) of cervical STT neurons. Neurons with excitatory somatic fields confined to the proximal limb or encompassing the whole limb were excited to a significantly greater extent by electrical stimulation of cardiopulmonary spinal afferents than were neurons with somatic fields confined to the distal limb. 5. Excitatory convergence of PHR and cardiopulmonary spinal afferent input was observed for 36/57 (63%) cervical STT neurons. 6. Electrical stimulation of PHR excited 36/84 (43%), inhibited 25/84 (30%), and did not affect 23/84 (27%) of thoracic STT neurons. All of these neurons received excitatory cardiopulmonary spinal afferent input. 7. Neurons were more likely to be excited by electrical stimulation of PHR if they were located in C3-C6 spinal segments. Furthermore, the net excitatory effect of PHR input decreased in more caudal segments, such that thoracic STT neurons were weakly excited relative to cervical STT neurons. 8. We conclude that cervical STT neurons with excitatory somatic fields that include or are restricted to proximal sites are excited by electrical or mechanical stimulation of PHR. Those effects demonstrate a physiological substrate for pain referred from the diaphragm to the shoulder in patients with pleural effusions or subphrenic abscesses.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources