Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep 9;47(36):9467-74.
doi: 10.1021/bi801153j. Epub 2008 Aug 15.

Inhibition of serine beta-lactamases by vanadate-catechol complexes

Affiliations

Inhibition of serine beta-lactamases by vanadate-catechol complexes

S A Adediran et al. Biochemistry. .

Abstract

All three classes of serine beta-lactamases are inhibited at micromolar levels by 1:1 complexes of catechols with vanadate. Vanadate reacts with catechols at submillimolar concentrations in aqueous buffer at neutral pH in several steps, initially forming 1:1, 1:2, and, possibly, 1:3 complexes. Formation of these complexes is followed by the slower reduction of vanadate (V (V)) to vanadyl (V (IV)) and oxidation of the catechol. Vanadyl-catechol complexes, however, do not inhibit the beta-lactamases. Rate and equilibrium constants of formation of the 1:1 and 1:2 complexes of vanadate with catechol itself and with 2,3-dihydroxynaphthalene were measured by stopped-flow spectrophotometry. Typical examples of all three classes of serine beta-lactamases (the class A TEM-2, class C P99, and class D OXA-1 enzymes) were competitively inhibited by the 1:1 vanadate-catechol complexes. The inhibition was modestly enhanced by hydrophobic substituents on the catechol. The 1:1 vanadate complexes are considerably better inhibitors of the P99 beta-lactamase than 1:1 complexes of catechol with boric acid and are likely to contain penta- or hexacoordinated vanadium rather than tetracooordinated. Molecular modeling showed that a pentacoordinated 1:1 vanadate-catechol complex readily fits into the class C beta-lactamase active site with coordination to the nucleophilic serine hydroxyl oxygen. Such complexes may resemble the pentacoordinated transition states of phosphyl transfer, a reaction also catalyzed by beta-lactamases.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources