Structural characteristics of the plasmid-encoded toxin from enteroaggregative Escherichia coli
- PMID: 18702515
- PMCID: PMC2551761
- DOI: 10.1021/bi8008714
Structural characteristics of the plasmid-encoded toxin from enteroaggregative Escherichia coli
Abstract
Intoxication by the plasmid-encoded toxin (Pet) of enteroaggregative Escherichia coli requires toxin translocation from the endoplasmic reticulum (ER) to the cytosol. This event involves the quality control system of ER-associated degradation (ERAD), but the molecular details of the process are poorly characterized. For many structurally distinct AB-type toxins, ERAD-mediated translocation is triggered by the spontaneous unfolding of a thermally unstable A chain. Here we show that Pet, a non-AB toxin, engages ERAD by a different mechanism that does not involve thermal unfolding. Circular dichroism and fluorescence spectroscopy measurements demonstrated that Pet maintains most of its secondary and tertiary structural features at 37 degrees C, with significant thermal unfolding only occurring at temperatures >or=50 degrees C. Fluorescence quenching experiments detected the partial solvent exposure of Pet aromatic amino acid residues at 37 degrees C, and a cell-based assay suggested that these changes could activate an ERAD-related event known as the unfolded protein response. We also found that HEp-2 cells were resistant to Pet intoxication when incubated with glycerol, a protein stabilizer. Altogether, our data are consistent with a model in which ERAD activity is triggered by a subtle structural destabilization of Pet and the exposure of Pet hydrophobic residues at physiological temperature. This was further supported by computer modeling analysis, which identified a surface-exposed hydrophobic loop among other accessible nonpolar residues in Pet. From our data it appears that Pet can promote its ERAD-mediated translocation into the cytosol by a distinct mechanism involving partial exposure of hydrophobic residues rather than the substantial unfolding observed for certain AB toxins.
Figures









References
-
- Canizalez-Roman A, Navarro-Garcia F. Fodrin CaM-binding domain cleavage by Pet from enteroaggregative Escherichia coli leads to actin cytoskeletal disruption. Mol. Microbiol. 2003;48:947–958. - PubMed
-
- Navarro-Garcia F, Canizalez-Roman A, Vidal JE, Salazar MI. Intoxication of epithelial cells by plasmid-encoded toxin requires clathrin-mediated endocytosis. Microbiology. 2007;153:2828–2838. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources