A novel three-phase model of brain tissue microstructure
- PMID: 18704170
- PMCID: PMC2495040
- DOI: 10.1371/journal.pcbi.1000152
A novel three-phase model of brain tissue microstructure
Erratum in
- PLoS Comput Biol. 2009 Jan;5(1). doi: 10.1371/annotation/c9faa83b-3c7b-4f38-8d74-1a4309403688 doi: 10.1371/annotation/c9faa83b-3c7b-4f38-8d74-1a4309403688
Abstract
We propose a novel biologically constrained three-phase model of the brain microstructure. Designing a realistic model is tantamount to a packing problem, and for this reason, a number of techniques from the theory of random heterogeneous materials can be brought to bear on this problem. Our analysis strongly suggests that previously developed two-phase models in which cells are packed in the extracellular space are insufficient representations of the brain microstructure. These models either do not preserve realistic geometric and topological features of brain tissue or preserve these properties while overestimating the brain's effective diffusivity, an average measure of the underlying microstructure. In light of the highly connected nature of three-dimensional space, which limits the minimum diffusivity of biologically constrained two-phase models, we explore the previously proposed hypothesis that the extracellular matrix is an important factor that contributes to the diffusivity of brain tissue. Using accurate first-passage-time techniques, we support this hypothesis by showing that the incorporation of the extracellular matrix as the third phase of a biologically constrained model gives the reduction in the diffusion coefficient necessary for the three-phase model to be a valid representation of the brain microstructure.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
References
-
- Nicholson C. Diffusion and related transport mechanisms in brain tissue. Rep Prog Phys. 2001;64:815–884.
-
- Syková E, Mazel T, Vargová L, Voříšek I, Prokopová-Kubinová S. Progress in Brain Research: Volume Transmission Revisited. Amsterdam: Elsevier; 2000. Extracellular space diffusion and pathological states. pp. 155–178. Chapter 6. - PubMed
-
- Torquato S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties. New York: Springer-Verlag; 2002.
-
- Nicholson C, Syková E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 1998;21:207–215. - PubMed
-
- Sen PN. Diffusion and tissue microstructure. J Phys Condens Matter. 2004;16:S5213–S5220.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
