Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle
- PMID: 18707612
- DOI: 10.1111/j.1462-2920.2008.01718.x
Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle
Abstract
Diversity, distribution and genetic comparison of Archaea associated with the surface mucus of corals from three genera, namely Acanthastrea sp., Favia sp. and Fungia sp., from the Gulf of Eilat, Israel and from Heron Island, Australia were studied. Sequencing of the 16S rRNA gene of the coral-associated Archaea revealed dominance of Crenarchaeota (79%, on average). In this phylum, 87% of the sequences were similar (>or= 97%) to the Thermoprotei, with 76% of these being similar (>or= 97%) to the ammonium oxidizer, Nitrosopumilus maritimus. Most of the coral-associated euryarchaeotal sequences (69%) were related to marine group II, while other euryarchaeotal clades were found to be related to anaerobic methanotrophs (8%), anaerobic nitrate reducers (i.e. denitrification, 15%) and marine group III (8%). Most of the crenarchaeotal and euryarchaeotal coral-associated 16S rRNA gene sequences from Heron Island (61%) and from the Gulf of Eilat (71%) were closely related (>or= 97%) to sequences previously derived from corals from the Virgin Islands. Analysis of archaeal amoA sequences obtained from the fungiid coral, Fungia granulosa, divided into three clades, all related to archaeal sequences previously obtained from the marine environment. These sequences were distantly related to amoA sequences previously found in association with other coral species. Preliminary experiments suggest that there is active oxidation of ammonia to nitrite in the mucus of F. granulosa. Thus, coral-associated Archaea may contribute to nitrogen recycling in the holobiont, presumably by acting as a nutritional sink for excess ammonium trapped in the mucus layer, through nitrification and denitrification processes.
Similar articles
-
Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current.Environ Microbiol. 2010 Jul;12(7):1989-2006. doi: 10.1111/j.1462-2920.2010.02205.x. Epub 2010 Mar 23. Environ Microbiol. 2010. PMID: 20345944
-
Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave.ISME J. 2009 Sep;3(9):1093-104. doi: 10.1038/ismej.2009.57. Epub 2009 May 28. ISME J. 2009. PMID: 19474813
-
Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing.ISME J. 2009 Jul;3(7):860-9. doi: 10.1038/ismej.2009.23. Epub 2009 Mar 26. ISME J. 2009. PMID: 19322244
-
Genomic studies of uncultivated archaea.Nat Rev Microbiol. 2005 Jun;3(6):479-88. doi: 10.1038/nrmicro1159. Nat Rev Microbiol. 2005. PMID: 15931166 Review.
-
Uncultured archaea in deep marine subsurface sediments: have we caught them all?ISME J. 2008 Jan;2(1):3-18. doi: 10.1038/ismej.2007.90. Epub 2007 Nov 8. ISME J. 2008. PMID: 18180743 Review.
Cited by
-
Microbiome dynamics in the tissue and mucus of acroporid corals differ in relation to host and environmental parameters.PeerJ. 2020 Aug 17;8:e9644. doi: 10.7717/peerj.9644. eCollection 2020. PeerJ. 2020. PMID: 32874778 Free PMC article.
-
Tropical aquatic Archaea show environment-specific community composition.PLoS One. 2013 Sep 25;8(9):e76321. doi: 10.1371/journal.pone.0076321. eCollection 2013. PLoS One. 2013. PMID: 24086729 Free PMC article.
-
A genome-centric view of the role of the Acropora kenti microbiome in coral health and resilience.Nat Commun. 2024 Apr 4;15(1):2902. doi: 10.1038/s41467-024-46905-5. Nat Commun. 2024. PMID: 38575584 Free PMC article.
-
High diversity of crustose coralline algae microbiomes across species and islands, and implications for coral recruits.Environ Microbiome. 2024 Dec 22;19(1):112. doi: 10.1186/s40793-024-00640-y. Environ Microbiome. 2024. PMID: 39710769 Free PMC article.
-
Stable and sporadic symbiotic communities of coral and algal holobionts.ISME J. 2016 May;10(5):1157-69. doi: 10.1038/ismej.2015.190. Epub 2015 Nov 10. ISME J. 2016. PMID: 26555246 Free PMC article.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Molecular Biology Databases