Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2008 Nov;214(1):6-9.
doi: 10.1016/j.expneurol.2008.07.016. Epub 2008 Jul 29.

Gliopathy ensures persistent inflammation and chronic pain after spinal cord injury

Affiliations
Comment

Gliopathy ensures persistent inflammation and chronic pain after spinal cord injury

Claire E Hulsebosch. Exp Neurol. 2008 Nov.

Abstract

Research focused on improving recovery of function, including the reduction of central neuropathic pain (CNP) after spinal cord injury (SCI) is essential. After SCI, regional neuropathic pain syndromes above, at and below the level or spinal injury develop and are thought to have different mechanisms, but may share common dysfunctional glial mechanisms. Detloff et al., [Detloff, M.R., Fisher, L.C., McGaughy, V., Longbrake, E.E., Popovich, P.G., Basso, D.M., Remote activation of microglia and pro-inflammatory cytokines predict the onset and severity of below-level neuropathic pain after spinal cord injury in rats. Exp. Neurol. (2008), doi: 10.1016/j.expneurol.2008.04.009.] describe events in the lumbar region of the spinal cord after a midthoracic SCI injury, the so called "below-level" pain and compares the findings to peripheral nerve lesion findings. This commentary briefly reviews glial contributions and intracellular signaling mechanisms, both neuronal and glial, that provide the substrate for CNP after SCI, including the persistent glial production of factors that can maintain sensitization of dorsal horn neurons in segments remote from the spinal injury; ie. dorsal horn hyperexcitability to formerly non noxious stimuli that become noxious after SCI resulting in allodynia. The term "gliopathy" is proposed to describe the dysfunctional and maladaptive response of glial cells, specifically astrocytes and microglia, to neural injury that is initiated by the sudden injury induced increase in extracellular concentrations of glutamate and concomitant production of several proinflammatory molecules. It is important to understand the roles that different glia play in "gliopathy", a condition that appears to persist after SCI. Furthermore, targeted treatment of gliopathy will attenuate mechanical allodynia in both central and peripheral neuropathic pain syndromes.

PubMed Disclaimer

Comment on

References

    1. Beattie MS, Hermann GE, Rogers RC, Bresnahan JC. Cell death in models of spinal cord injury. Prog Brain Res. 2002;137:37–47. - PubMed
    1. Bennett AD, Everhart AW, Hulsebosch CE. Intrathecal NMDA and non-NMDA receptor antagonists reduce mechanical but not thermal allodynia in a rodent model of chronic central pain after spinal cord injury. Brain Res. 2000;859:72–82. - PubMed
    1. Christensen MD, Hulsebosch CE. Chronic central pain after spinal cord injury. J Neurotrauma. 1997;14:517–537. - PubMed
    1. Crown ED, Gwak YS, Ye Z, Johnson KM, Hulsebosch CE. Activation of p38 MAP kinase is involved in central neuropathic pain following spinal cord injury. Exp Neurol. 2008 doi: 10.1016/j.expneurol.2008.05.025. - DOI - PMC - PubMed
    1. Crown ED, Ye Z, Johnson KM, Xu GY, McAdoo DJ, Hulsebosch CE. Increases in the activated forms of ERK 1.2, p38 MAPK, and CREB are correlated with the expression of at-level mechanical allodynia following spinal cord injury. Exp Neurol. 2006;199:397–407. - PubMed