Human lactoferrin induces apoptosis-like cell death in Candida albicans: critical role of K+-channel-mediated K+ efflux
- PMID: 18710913
 - PMCID: PMC2573133
 - DOI: 10.1128/AAC.01597-07
 
Human lactoferrin induces apoptosis-like cell death in Candida albicans: critical role of K+-channel-mediated K+ efflux
Abstract
Human lactoferrin (hLf) induced an apoptosis-like phenotype in Candida albicans cells, which includes phosphatidylserine externalization, nuclear chromatin condensation, DNA degradation, and increased reactive oxygen species (ROS) production. Intracellular ROS accumulation was seen to correlate with candidacidal activity in hLf-treated cells. Mitochondrial activity was involved as indicated by mitochondrial depolarization and increased hLf resistance of cells preincubated with sordarin or erythromycin, the latter of which inhibits protein synthesis in mitoribosomes. Interestingly, Cl(-)- and K(+)-channel blockers prevented the hLf antimicrobial activity, but only when cells were pretreated with the blocking agent (tetraethylammonium) prior to the hLf-induced K(+)-release period. These results indicate for the first time that K(+)-channel-mediated K(+) efflux is required for the progression of apoptosis-like process in yeast, suggesting that this essential apoptotic event of higher eukaryotes has been evolutionary conserved among species ranging from yeasts to humans.
Figures
              
              
              
              
                
                
                
              
              
              
              
                
                
                
              
              
              
              
                
                
                
              
              
              
              
                
                
                
              
              
              
              
                
                
                References
- 
    
- Baev, D., A. Rivetta, S. Vylkova, J. N. Sun, G. F. Zeng, C. L. Slayman, and M. Edgerton. 2004. The TRK1 potassium transporter is the critical effector for killing of Candida albicans by the cationic protein, Histatin 5. J. Biol. Chem. 279:55060-55072. - PubMed
 
 - 
    
- Balzan, R., K. Sapienza, D. R. Galea, N. Vassallo, H. Frey, and W. H. Bannister. 2004. Aspirin commits yeast cells to apoptosis depending on carbon source. Microbiology 150:109-115. - PubMed
 
 - 
    
- Bortner, C. D., and J. A. Cidlowski. 2002. Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ. 9:1307-1310. - PubMed
 
 - 
    
- Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. - PubMed
 
 
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
