Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep 17;130(37):12246-7.
doi: 10.1021/ja8047442. Epub 2008 Aug 21.

A photolabile ligand for light-activated release of caged copper

Affiliations

A photolabile ligand for light-activated release of caged copper

Katie L Ciesienski et al. J Am Chem Soc. .

Abstract

A photosensitive caged copper complex has been prepared from a tetradentate ligand (H2cage) composed of two pyridyl-amide arms connected by a photoreactive nitrophenyl group. H2cage binds Cu2+ in aqueous solution with a stability constant (log beta) of 10.8, which corresponds to a KD of 16 pM at pH 7.4. The neutral Cu2+ complex, [Cu(OH2)(cage)], crystallizes as a distorted trigonal bipyramid coordinated by two amide and two pyridyl N atoms, with a water molecule bound in the trigonal plane. Photolysis with 350 nm UV light cleaves the ligand backbone to release photoproducts with significantly diminished affinity for Cu2+, thereby uncaging the metal ion. When coordinated as the caged complex, copper has diminished reactivity to produce hydroxyl radicals from Fenton-like reaction mixtures containing hydrogen peroxide and ascorbic acid. Postphotolysis, uncaged copper promotes hydroxyl radical formation under the same conditions. The strategy of caging copper is promising for applications where light could be used to trigger release of copper as a pro-oxidant to increase oxidative stress or as a tool to release copper intracellularly to study mechanisms of copper trafficking.

PubMed Disclaimer

Publication types

LinkOut - more resources