Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jan;10(1):58-67.
doi: 10.1111/j.1467-789X.2008.00520.x. Epub 2008 Aug 20.

A critical review of the cannabinoid receptor as a drug target for obesity management

Affiliations
Review

A critical review of the cannabinoid receptor as a drug target for obesity management

F Akbas et al. Obes Rev. 2009 Jan.

Abstract

The discovery of cannabinoids, with the well-known stimulatory effect of Cannabis sativa on appetite, has offered a new drug target for obesity treatment. Cannabinoids act on two different receptors: CB1 receptors which are sited in the brain and many peripheral tissues, and CB2 receptors which are primarily found in immune system cells. Cannabinoid receptor antagonists act centrally by blocking CB1 receptors, thereby reducing food intake. Moreover, they probably also act peripherally by increasing thermogenesis and therefore energy expenditure, as has been suggested by animal experiments. Despite these promising mechanisms of action, recent clinical studies examining the effect of the two CB1 receptor antagonists rimonabant and taranabant showed that the attained weight loss did not exceed that attained with other currently approved anti-obesity medications. Moreover, potentially severe psychiatric adverse effects limit their clinical use. As several new CB1 receptor antagonists are presently undergoing development, it remains to be elucidated to what extent they differ in terms of efficacy and safety. This review primarily discusses how close cannabinoid receptor antagonists are to the ideal anti-obesity drug, with respect to their mechanisms of action, clinical effectiveness and safety.

PubMed Disclaimer

Publication types

MeSH terms