Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Sep:10 Suppl 1:37-49.
doi: 10.1111/j.1438-8677.2008.00114.x.

Leaf senescence and nutrient remobilisation in barley and wheat

Affiliations
Review

Leaf senescence and nutrient remobilisation in barley and wheat

P L Gregersen et al. Plant Biol (Stuttg). 2008 Sep.

Abstract

Extensive studies have been undertaken on senescence processes in barley and wheat and their importance for the nitrogen use efficiency of these crop plants. During the senescence processes, proteins are degraded and nutrients are re-mobilised from senescing leaves to other organs, especially the developing grain. Most of the proteins degraded reside in the chloroplasts, with Rubisco constituting the most dominant protein fraction. Despite intensive studies, the proteases responsible for Rubisco degradation have not yet been identified. Evidence for degradation of stromal proteins outside of chloroplasts is summarised. Rubisco is thought to be released from chloroplasts into vesicles containing stroma material (RCB = Rubisco-containing bodies). These vesicles may then take different routes for their degradation. Transcriptome analyses on barley and wheat senescence have identified genes involved in degradative, metabolic and regulatory processes that could be used in future strategies aimed at modifying the senescence process. The breeding of crops for characters related to senescence processes, e.g. higher yields and better nutrient use efficiency, is complex. Such breeding has to cope with the dilemma that delayed senescence, which could lead to higher yields, is correlated with a decrease in nutrient use efficiency. Pinpointing regulatory genes involved in senescence might lead to tools that could effectively overcome this dilemma.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources