Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jan;56(1):303-9.
doi: 10.1016/j.neuropharm.2008.07.034. Epub 2008 Aug 3.

Native glycine receptor subtypes and their physiological roles

Affiliations
Review

Native glycine receptor subtypes and their physiological roles

Joseph W Lynch. Neuropharmacology. 2009 Jan.

Abstract

The glycine receptor chloride channel (GlyR), a member of the pentameric Cys-loop ion channel receptor family, mediates inhibitory neurotransmission in the spinal cord, brainstem and retina. They are also found presynaptically, where they modulate neurotransmitter release. Functional GlyRs are formed from a total of five subunits (alpha1-alpha4, beta). Although alpha subunits efficiently form homomeric GlyRs in recombinant expression systems, homomeric alpha1, alpha3 and alpha4 GlyRs are weakly expressed in adult neurons. In contrast, alpha2 homomeric GlyRs are abundantly expressed in embryonic neurons, although their numbers decline sharply by adulthood. Numerous lines of biochemical, biophysical, pharmacological and genetic evidence suggest the majority of glycinergic neurotransmission in adults is mediated by heteromeric alpha1beta GlyRs. Immunocytochemical co-localisation experiments suggest the presence of alpha2beta, alpha3beta and alpha4beta GlyRs at synapses in the adult mouse retina. Immunocytochemical and electrophysiological evidence also implicates alpha3beta GlyRs as important mediators of glycinergic inhibitory neurotransmission in nociceptive sensory neuronal circuits in peripheral laminae of the spinal cord dorsal horn. It is yet to be determined why multiple GlyR synaptic subtypes are differentially distributed in these and possibly other locations. The development of pharmacological agents that can discriminate strongly between different beta subunit-containing GlyR isoforms will help to address this issue, and thereby provide important insights into a variety of central nervous system functions including retinal signal processing and spinal pain mechanisms. Finally, agents that selectively potentiate different GlyR isoforms may be useful as therapeutic lead compounds for peripheral inflammatory pain and movement disorders such as spasticity.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources