Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep;23(6 Suppl 1):56-60.
doi: 10.1016/j.arth.2008.05.021.

Wear performance of large-diameter differential-hardness hip bearings

Affiliations

Wear performance of large-diameter differential-hardness hip bearings

C Lowry Barnes et al. J Arthroplasty. 2008 Sep.

Abstract

We hypothesized that differential-hardness hard-on-hard bearings would generate less wear debris compared with like-hardness metal-on-metal (M-o-M) bearings. We conducted wear testing on 3 types of large-diameter hard hip bearings: (1) contemporary cast-on-cast ("like" hardness) M-o-M; (2) differential-hardness M-o-M; and (3) differential-hardness ceramic-on-metal. A simulated gait profile ranging from 200 to 2000 N was applied to the bearings at a frequency of 1 Hz for 5 Mc. All bearings were tested in an anatomically inverted position in 90% alpha calf serum. Both differential-hardness bearing systems produced lower run-in wear rates (90%-97%), steady-state wear rate (45%-84%), and total metal wear (68%-88%) compared with the like-hardness bearing system. The ceramic-on-metal bearings exhibited the least wear followed by differential-hardness M-o-M bearings; like-hardness M-o-M bearings exhibited the greatest amount of wear. These findings support our hypothesis that differential-hardness hip bearing systems produce less metallic wear debris than those with like hardness and may result in lower metal ion release in vivo.

PubMed Disclaimer

Publication types

LinkOut - more resources