Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Apr 15;30(5):725-32.
doi: 10.1002/jcc.21094.

Ab initio calculations on halogen-bonded complexes and comparison with density functional methods

Affiliations
Comparative Study

Ab initio calculations on halogen-bonded complexes and comparison with density functional methods

Yun-Xiang Lu et al. J Comput Chem. .

Abstract

A systematic theoretical investigation on a series of dimeric complexes formed between some halocarbon molecules and electron donors has been carried out by employing both ab initio and density functional methods. Full geometry optimizations are performed at the Moller-Plesset second-order perturbation (MP2) level of theory with the Dunning's correlation-consistent basis set, aug-cc-pVDZ. Binding energies are extrapolated to the complete basis set (CBS) limit by means of two most commonly used extrapolation methods and the aug-cc-pVXZ (X = D, T, Q) basis sets series. The coupled cluster with single, double, and noniterative triple excitations [CCSD(T)] correction term, determined as a difference between CCSD(T) and MP2 binding energies, is estimated with the aug-cc-pVDZ basis set. In general, the inclusion of higher-order electron correlation effects leads to a repulsive correction with respect to those predicted at the MP2 level. The calculations described herein have shown that the CCSD(T) CBS limits yield binding energies with a range of -0.89 to -4.38 kcal/mol for the halogen-bonded complexes under study. The performance of several density functional theory (DFT) methods has been evaluated comparing the results with those obtained from MP2 and CCSD(T). It is shown that PBEKCIS, B97-1, and MPWLYP functionals provide accuracies close to the computationally very expensive ab initio methods.

PubMed Disclaimer

Publication types

LinkOut - more resources