Morphology and location of dense-core vesicles in the stomatogastric ganglion of the lobster, Panulirus interruptus
- PMID: 187346
- DOI: 10.1007/BF00218716
Morphology and location of dense-core vesicles in the stomatogastric ganglion of the lobster, Panulirus interruptus
Abstract
The appearance and distribution of dense-core vesicles in the stomatogastric ganglion of the spiny lobster, Panulirus interruptus, were examined using transmission electron microscopy. Following five fixation techniques, three types of dense-core vesicles were identified on the basis of size and morphology. Type-I vesicles are found in a distinct neuronal fiber system that appears to be involved in chemical transmission within the ganglion. Type-II vesicles occur in nerve processes in the ganglion, in major nerve trunks and in the perineural sheath of the nerves and ganglion. Type-III vesicles are present in all neuronal somata of the ganglion. The distinct morphology and location of the three types of vesicles suggest that their functional roles differ. Furthermore, the histochemical, biochemical and physiological data available for the stomatogastric ganglion indicate that Type-I vesicles may store dopamine.
Similar articles
-
Distribution and partial characterization of FMRFamide-like peptides in the stomatogastric nervous systems of the rock crab, Cancer borealis, and the spiny lobster, Panulirus interruptus.J Comp Neurol. 1987 May 1;259(1):150-63. doi: 10.1002/cne.902590111. J Comp Neurol. 1987. PMID: 3584554
-
Organization of crustacean neuropil. I. Patterns of synaptic connections in lobster stomatogastric ganglion.J Neurocytol. 1976 Apr;5(2):207-37. doi: 10.1007/BF01181657. J Neurocytol. 1976. PMID: 1271087
-
The localization of two voltage-gated calcium channels in the pyloric network of the lobster stomatogastric ganglion.Neuroscience. 2002;112(1):217-32. doi: 10.1016/s0306-4522(01)00621-2. Neuroscience. 2002. PMID: 12044485
-
Electron microscopy of stomatogastric ganglion in the lobster Homarus americanus.Tissue Cell. 1971;3(1):137-60. doi: 10.1016/s0040-8166(71)80036-8. Tissue Cell. 1971. PMID: 18631547
-
Morphology of synapses in the autonomic nervous system.J Electron Microsc Tech. 1988 Oct;10(2):187-204. doi: 10.1002/jemt.1060100205. J Electron Microsc Tech. 1988. PMID: 3068334 Review.
Cited by
-
Ultrastructural organization of the gastric ganglion in the crayfish.Neurosci Behav Physiol. 1984 Jul-Aug;14(4):290-6. doi: 10.1007/BF01149613. Neurosci Behav Physiol. 1984. PMID: 6472611 No abstract available.
-
Patterns and distribution of presynaptic and postsynaptic elements within serial electron microscopic reconstructions of neuronal arbors from the medicinal leech Hirudo verbana.J Comp Neurol. 2016 Dec 15;524(18):3677-3695. doi: 10.1002/cne.24120. J Comp Neurol. 2016. PMID: 27636374 Free PMC article.
-
The pharmacological properties of some crustacean neuronal acetylcholine, gamma-aminobutyric acid, and L-glutamate responses.J Physiol. 1978 Jul;280:213-36. doi: 10.1113/jphysiol.1978.sp012381. J Physiol. 1978. PMID: 211227 Free PMC article.
-
Arthropod 5-HT2 receptors: a neurohormonal receptor in decapod crustaceans that displays agonist independent activity resulting from an evolutionary alteration to the DRY motif.J Neurosci. 2004 Mar 31;24(13):3421-35. doi: 10.1523/JNEUROSCI.0062-04.2004. J Neurosci. 2004. PMID: 15056722 Free PMC article.
-
Molecular underpinnings of motor pattern generation: differential targeting of shal and shaker in the pyloric motor system.J Neurosci. 2000 Sep 1;20(17):6619-30. doi: 10.1523/JNEUROSCI.20-17-06619.2000. J Neurosci. 2000. PMID: 10964967 Free PMC article.