Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 Sep;69(3):765-78.
doi: 10.1161/01.res.69.3.765.

Diastolic anisotropic properties of the left ventricle in the conscious dog

Affiliations
Free article
Comparative Study

Diastolic anisotropic properties of the left ventricle in the conscious dog

C O Olsen et al. Circ Res. 1991 Sep.
Free article

Abstract

The role of myocardial anisotropy in determining change in left ventricular shape during diastolic filling has not yet been demonstrated. Therefore, 11 conscious dogs were instrumented with global ultrasonic dimension transducers to measure left ventricular major and minor axis diameters and equatorial wall thickness. Myocardial geometry was represented as a three-dimensional ellipsoidal shell. Left ventricular transmural pressure was measured with micromanometers, and ventricular volume was varied by inflation of vena caval occluders. Left ventricular wall strains and stresses calculated from the ellipsoidal shell model agreed closely with those measured directly by myocardial force and dimension transducers. Unequal normalized diastolic stress-strain relations were observed in the latitudinal, longitudinal, and wall thickness directions, reflecting anisotropic mechanical properties of the myocardium. Although a greater wall stress in the latitudinal versus longitudinal axis was predicted adequately from left ventricular geometry alone, the observed latitudinal strain exceeded longitudinal strain by an amount greater than was predicted by geometric considerations alone, suggesting that myocardial anisotropy contributes significantly to changes in ventricular shape during diastolic filling.

PubMed Disclaimer

Publication types

LinkOut - more resources