Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 May;9(2):125-36.
doi: 10.1007/BF00175080.

Effects of isomeric 2-(arylmethylamino)-1,3-propanediols (AMAPs) and clinically established agents on macromolecular synthesis in P388 and MCF-7 cells

Affiliations

Effects of isomeric 2-(arylmethylamino)-1,3-propanediols (AMAPs) and clinically established agents on macromolecular synthesis in P388 and MCF-7 cells

C A Carter et al. Invest New Drugs. 1991 May.

Abstract

The in vitro effects of the 2-(arylmethylamino)-1,3-propanediols (AMAPs) on macromolecular synthesis have been examined using the murine leukemia, P388, and the human mammary adenocarcinoma, MCF-7, under conditions of short-term drug exposure. AMAPs that were observed to inhibit macromolecular synthesis produced nearly equipotent inhibition of DNA and RNA synthesis. Equivalent inhibition of protein synthesis generally required significantly greater concentrations of AMAP. There is a general correlation between inhibition of polynucleotide synthesis and in vivo antitumor activity. The effects of four clinical candidate AMAPs (crisnatol, 773U82, 502U83, and 7U85) on macromolecular synthesis were further compared with those of actinomycin D, doxorubicin, mitoxantrone, etoposide, amsacrine, and cisplatin in MCF-7 cells. The pattern of AMAP action was most similar to that observed for doxorubicin and mitoxantrone. Finally, the effects of these four AMAPs on the size, specific activity, and rate of incorporation of [3H]-dTTP into DNA of MCF-7 cells synchronized by pretreatment with hydroxyurea was determined. It was found that DNA synthesis was inhibited by AMAPs independent of inhibition of the uptake, phosphorylation, or retention of the metabolic precursors. These results support the theory that antitumor AMAPs interfere with the normal functioning of enzymes, such as topoisomerase II or DNA and RNA polymerases, which interact with DNA.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Med Chem. 1990 Sep;33(9):2385-93 - PubMed
    1. Biochem Pharmacol. 1985 Oct 1;34(19):3499-508 - PubMed
    1. J Biol Chem. 1983 Jan 10;258(1):339-43 - PubMed
    1. Cancer Res. 1983 Apr;43(4):1592-7 - PubMed
    1. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1238-45 - PubMed