Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Aug 25;266(24):15579-82.

Cleavage of cartilage proteoglycan between G1 and G2 domains by stromelysins

Affiliations
  • PMID: 1874716
Free article

Cleavage of cartilage proteoglycan between G1 and G2 domains by stromelysins

A J Fosang et al. J Biol Chem. .
Free article

Abstract

Normal and pathological turnover of proteoglycans in articular cartilage involves its cleavage close to the N-terminal G1 domain responsible for aggregation. A fragment containing G1 and G2 N-terminal domains of pig cartilage proteoglycans was therefore used as a substrate to investigate its degradation by the metalloproteinase stromelysin and related recombinant stromelysin enzymes. The stromelysins produced an apparent single cleavage yielding a G1 fragment of 56 kDa and a G2 fragment of 110 kDa. Rabbit bone stromelysin was much more active against the G1-G2 fragment and against proteoglycan aggregates than recombinant human stromelysin-1 and stromelysin-2. All metalloproteinase preparations were active against proteoglycan and the G1-G2 fragment at acid (pH 5.5) and neutral pH (7.4). N-terminal sequencing of the G2 fragment derived from the action of recombinant human stromelysin-1 revealed that cleavage between G1 and G2 occurred at the N-terminal end of the interglobular domain, close to the last cysteine in G1. The specific cleavage site was between an asparagine and a pair of phenylalanine residues, where the asparagine corresponds to residue 341 in human and rat mature core protein sequence.

PubMed Disclaimer

Publication types

LinkOut - more resources