Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep;8(17):3548-60.
doi: 10.1002/pmic.200700548.

Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure

Affiliations

Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure

Horst Röhrig et al. Proteomics. 2008 Sep.

Abstract

Reversible protein phosphorylation/dephosphorylation is crucial for regulation of many cellular events, and increasing evidence indicates that this post-translational modification is also involved in the complex process of acquisition of desiccation tolerance. To analyze the phosphoproteome of the desiccation tolerant resurrection plant Craterostigma plantagineum, MOAC-enriched proteins from leaves at different stages of a de-/rehydration cycle were separated by 2-D PAGE and detected by phosphoprotein-specific staining. Using this strategy 20 putative phosphoproteins were identified by MALDI-TOF MS and MS/MS, which were not detected when total proteins were analyzed. The characterized desiccation-related phosphoproteins CDeT11-24 and CDeT6-19 were used as internal markers to validate the specificity of the analyses. For 16 of the identified proteins published evidence suggests that they are phosphoproteins. Comparative analysis of the 2-D gels showed that spot intensities of most identified putative phosphoproteins change during the de-/rehydration cycle. This suggests an involvement of these proteins in desiccation tolerance. Nearly all changes in the phosphoproteome of C. plantagineum, which are triggered by dehydration, are reversed within 4 days of rehydration, which is in agreement with physiological observations. Possible functions of selected proteins are discussed in the context of the de-/rehydration cycle.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources