Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep;27(9):1288-300.
doi: 10.1109/TMI.2008.922693.

A probabilistic framework based on hidden markov model for fiducial identification in image-guided radiation treatments

Affiliations

A probabilistic framework based on hidden markov model for fiducial identification in image-guided radiation treatments

Zhiping Mu et al. IEEE Trans Med Imaging. 2008 Sep.

Abstract

Fiducial tracking is a common target tracking method widely used in image-guided procedures such as radiotherapy and radiosurgery. In this paper, we present a multifiducial identification method that incorporates context information in the process. We first convert the problem into a state sequence problem by establishing a probabilistic framework based on a hidden Markov model (HMM), where prior probability represents an individual candidate's resemblance to a fiducial; transition probability quantifies the similarity of a candidate set to the fiducials' geometrical configuration; and the Viterbi algorithm provides an efficient solution. We then discuss the problem of identifying fiducials using stereo projections, and propose a special, higher order HMM, which consists of two parallel HMMs, connected by an association measure that captures the inherent correlation between the two projections. A novel algorithm, the concurrent viterbi with association (CVA) algorithm, is introduced to efficiently identify fiducials in the two projections simultaneously. This probabilistic framework is highly flexible and provides a buffer to accommodate deformations. A simple implementation of the CVA algorithm is presented to evaluate the efficacy of the framework. Experiments were carried out using clinical images acquired during patient treatments, and several examples are presented to illustrate a variety of clinical situations. In the experiments, the algorithm demonstrated a large tracking range, computational efficiency, ease of use, and robustness that meet the requirements for clinical use.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms