Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan;152(1):29-41.
doi: 10.1007/s12010-008-8204-5. Epub 2008 Aug 27.

Deactivation kinetics and response surface analysis of the stability of alpha-L-rhamnosidase from Penicillium decumbens

Affiliations

Deactivation kinetics and response surface analysis of the stability of alpha-L-rhamnosidase from Penicillium decumbens

I Magario et al. Appl Biochem Biotechnol. 2009 Jan.

Abstract

The stability of the mixed enzyme preparation Naringinase from Penicillium decumbens was studied in dependence of the temperature, the pH value, and the enzyme concentration by means of response surface methodology. Deactivation kinetics by formation of an intermediate state was proposed for fitting deactivation data. Empirical models could then be constructed for prediction of deactivation rate constants, specific activity of intermediate state, and half-life values under different incubation conditions. From this study, it can be concluded that (1) Naringinase is most stable in the pH range of 4.5-5.0, being quite sensitive to lower pHs (<3.5) and (2) the glyco-enzyme is a rather thermo-stable enzyme preserving its initial activity for long times when incubated at its optimal pH up to temperatures of 65 degrees C. Enriched alpha-L-rhamnosidase after column treatment and ultrafiltration presented similar deactivation kinetics pattern and half-life values as the unpurified enzyme. Thus, any influence of low molecular weight substances on its deactivation is most probably negligible. The intermediate state of the enzyme may correspond to unfolding and self-digestion of its carbohydrate portion, lowering its activity relative to the initial state. The digestion- and unfolding-grade of this intermediate state may also be controlled by the pH and temperature of incubation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources