Evolutionary comparison of ribosomal operon antitermination function
- PMID: 18757535
- PMCID: PMC2580698
- DOI: 10.1128/JB.00760-08
Evolutionary comparison of ribosomal operon antitermination function
Abstract
Transcription antitermination in the ribosomal operons of Escherichia coli results in the modification of RNA polymerase by specific proteins, altering its basic properties. For such alterations to occur, signal sequences in rrn operons are required as well as individual interacting proteins. In this study we tested putative rrn transcription antitermination-inducing sequences from five different bacteria for their abilities to function in E. coli. We further examined their response to the lack of one known rrn transcription antitermination protein from E. coli, NusB. We monitored antitermination activity by assessing the ability of RNA polymerase to read through a factor-dependent terminator. We found that, in general, the closer the regulatory sequence matched that of E. coli, the more likely there was to be a successful antitermination-proficient modification of the transcription complex. The rrn leader sequences from Pseudomonas aeruginosa, Bacillus subtilis, and Caulobacter crescentus all provided various levels of, but functionally significant antitermination properties to, RNA polymerase, while those of Mycobacterium tuberculosis and Thermotoga maritima did not. Possible RNA folding structures of presumed antitermination sequences and specific critical bases are discussed in light of our results. An unexpected finding was that when using the Caulobacter crescentus rrn leader sequence, there was little effect on terminator readthrough in the absence of NusB. All other hybrid antitermination system activities required this factor. Possible reasons for this finding are discussed.
Figures




Similar articles
-
Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10.Cell. 1993 Jan 29;72(2):261-8. doi: 10.1016/0092-8674(93)90665-d. Cell. 1993. PMID: 7678781
-
Specificity of antitermination mechanisms. Suppression of the terminator cluster T1-T2 of Escherichia coli ribosomal RNA operon, rrnB, by phage lambda antiterminators.J Mol Biol. 1991 Nov 5;222(1):59-66. doi: 10.1016/0022-2836(91)90737-q. J Mol Biol. 1991. PMID: 1719220
-
In vivo effect of NusB and NusG on rRNA transcription antitermination.J Bacteriol. 2004 Mar;186(5):1304-10. doi: 10.1128/JB.186.5.1304-1310.2004. J Bacteriol. 2004. PMID: 14973028 Free PMC article.
-
Antitermination of transcription of catabolic operons.Mol Microbiol. 1997 Feb;23(3):413-21. doi: 10.1046/j.1365-2958.1997.d01-1867.x. Mol Microbiol. 1997. PMID: 9044276 Review.
-
Antitermination mechanisms in rRNA operons of Escherichia coli.J Bacteriol. 1986 Oct;168(1):1-5. doi: 10.1128/jb.168.1.1-5.1986. J Bacteriol. 1986. PMID: 2428806 Free PMC article. Review. No abstract available.
Cited by
-
Processive Antitermination.Microbiol Spectr. 2018 Sep;6(5):10.1128/microbiolspec.rwr-0031-2018. doi: 10.1128/microbiolspec.RWR-0031-2018. Microbiol Spectr. 2018. PMID: 30191803 Free PMC article. Review.
-
Evolution of multisubunit RNA polymerases in the three domains of life.Nat Rev Microbiol. 2011 Feb;9(2):85-98. doi: 10.1038/nrmicro2507. Nat Rev Microbiol. 2011. PMID: 21233849 Review.
-
SuhB Associates with Nus Factors To Facilitate 30S Ribosome Biogenesis in Escherichia coli.mBio. 2016 Mar 15;7(2):e00114. doi: 10.1128/mBio.00114-16. mBio. 2016. PMID: 26980831 Free PMC article.
-
RNA Polymerase Clamp Movement Aids Dissociation from DNA but Is Not Required for RNA Release at Intrinsic Terminators.J Mol Biol. 2019 Feb 15;431(4):696-713. doi: 10.1016/j.jmb.2019.01.003. Epub 2019 Jan 8. J Mol Biol. 2019. PMID: 30630008 Free PMC article.
-
Structure-based functional inference of hypothetical proteins from Mycoplasma hyopneumoniae.J Mol Model. 2012 May;18(5):1917-25. doi: 10.1007/s00894-011-1212-3. Epub 2011 Aug 26. J Mol Model. 2012. PMID: 21870198 Free PMC article.
References
-
- Albrechtsen, B., C. L. Squires, S. Li, and C. Squires. 1990. Antitermination of characterized transcriptional terminators by the Escherichia coli rrnG leader region. J. Mol. Biol. 213123-134. - PubMed
-
- Angelini, G., N. Tanigaki, R. Tosi, and G. B. Ferrara. 1986. Southern blot and micro fingerprinting analysis of two DR7 haplotypes. Immunogenetics 2463-67. - PubMed
-
- Berg, K. L., C. Squires, and C. L. Squires. 1989. Ribosomal RNA operon anti-termination. Function of leader and spacer region box B-box A sequences and their conservation in diverse micro-organisms. J. Mol. Biol. 209345-358. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases