Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991;49(12):PL67-72.
doi: 10.1016/0024-3205(91)90178-e.

Gossypol effects on endothelial cells and tumor blood flow

Affiliations
Comparative Study

Gossypol effects on endothelial cells and tumor blood flow

C C Benz et al. Life Sci. 1991.

Abstract

Isomers (-, +) of the antitumor agent gossypol (G) were studied for their ability to reduce tumor ATP and blood flow in rats bearing subcutaneously implanted pancreatic tumors. A 50% reduction in tumor ATP/Pi within ih of a single injection of -G was associated with a 60% decline in tumor blood flow. To determine if these changes in tumor physiology could be due to a direct drug effect on tumor endothelium, G isomers were compared for their ability to alter protein (125I-BSA) permeability and metabolic (32P) labelling of cultured endothelial cells. Treatments for ih produced no endothelial cell leakage, but 24h exposures to either -G (5 microM) or +G (50 microM) produced complete permeability of the monolayers to 125I-BSA. In contrast, 0.5-I.Oh exposures to -G (4 microM) produced 2 to 3-fold increases in phosphorylated 27 kDa heat-shock protein, hsp-27. Hsp-27 phosphoprotein isoforms were differentially labelled following -G and +G exposures with the phosphorylation profile of -G appearing most similar to that of oxyradical producing agents known to induce hsp-27 and injure endothelial cells. We postulate that the tumor ischemic effects of -G are mediated by endothelial response to oxyradical production in a mechanism similar to that of tissue ischemia-reperfusion injury.

PubMed Disclaimer

Publication types

LinkOut - more resources