Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Oct 7;53(19):N359-70.
doi: 10.1088/0031-9155/53/19/N01. Epub 2008 Aug 29.

Monte Carlo simulation of RapidArc radiotherapy delivery

Affiliations

Monte Carlo simulation of RapidArc radiotherapy delivery

K Bush et al. Phys Med Biol. .

Abstract

RapidArc radiotherapy technology from Varian Medical Systems is one of the most complex delivery systems currently available, and achieves an entire intensity-modulated radiation therapy (IMRT) treatment in a single gantry rotation about the patient. Three dynamic parameters can be continuously varied to create IMRT dose distributions-the speed of rotation, beam shaping aperture and delivery dose rate. Modeling of RapidArc technology was incorporated within the existing Vancouver Island Monte Carlo (VIMC) system (Zavgorodni et al 2007 Radiother. Oncol. 84 S49, 2008 Proc. 16th Int. Conf. on Medical Physics). This process was named VIMC-Arc and has become an efficient framework for the verification of RapidArc treatment plans. VIMC-Arc is a fully automated system that constructs the Monte Carlo (MC) beam and patient models from a standard RapidArc DICOM dataset, simulates radiation transport, collects the resulting dose and converts the dose into DICOM format for import back into the treatment planning system (TPS). VIMC-Arc accommodates multiple arc IMRT deliveries and models gantry rotation as a series of segments with dynamic MLC motion within each segment. Several verification RapidArc plans were generated by the Eclipse TPS on a water-equivalent cylindrical phantom and re-calculated using VIMC-Arc. This includes one 'typical' RapidArc plan, one plan for dual arc treatment and one plan with 'avoidance' sectors. One RapidArc plan was also calculated on a DICOM patient CT dataset. Statistical uncertainty of MC simulations was kept within 1%. VIMC-Arc produced dose distributions that matched very closely to those calculated by the anisotropic analytical algorithm (AAA) that is used in Eclipse. All plans also demonstrated better than 1% agreement of the dose at the isocenter. This demonstrates the capabilities of our new MC system to model all dosimetric features required for RapidArc dose calculations.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources