Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Dec 10;251(23):7431-6.

Spin-labeled stearates as probes for microenvironment of murine thymocyte adenylate cyclase-cyclic adenosine 3':5'-monophosphate system

  • PMID: 187588
Free article

Spin-labeled stearates as probes for microenvironment of murine thymocyte adenylate cyclase-cyclic adenosine 3':5'-monophosphate system

T V Zenser et al. J Biol Chem. .
Free article

Abstract

The interaction of various spin-labeled compounds with the murine thymocyte adenylate cyclase-cyclic AMP system was investigated. Electron paramagnetic resonance spectra from spin-labeled compounds were used to calculate the order parameter, S, and indicated that the thymocyte plasma membrane is a relatively rigid structure. Increasing concentrations of spin-labeled stearates, but not their corresponding methyl esters, resulted in increased membrane fluidity, partial lysis, and concomitant complete inhibition of cholera toxin-mediated increases in cyclic AMP content. Upon subsequent isolation of plasma membranes from these cells, cholera toxin-stimulated adenylate cyclase activity was also completely inhibited. Direct addition of spin-labeled stearates, but not spin-labeled methyl stearates, to thymocyte homogenates caused a dramatic reduction of basal, cholera toxin-, isoproterenol-, NaF-, and prostaglandin E1-stimulated adenylate cyclase activity. Inhibition was complete within the first minute of addition to homogenates and required approximately 0.2 mM spin-labeled stearate I(12,3) for half-maximal inhibition. This inhibition occurred in the presence or absence of an ATP-regenerating system and was not readily reversible. Furthermore, since the membrane cyclic phosphodiesterase activity was not altered by spin-labeled stearates, their inhibition was attributed to a direct action of stearate spin labels on adenylate cyclase. Neither stearate, methyl stearate, spin-labeled methyl stearates nor 2,2,6,6,-tetramethylpiperidine-1-oxyl (Tempo) altered cell viability or enzyme activities at the concentrations studied. Spin-labeled stearates seemed to intercalate into different areas of the plasma membrane than their corresponding methyl esters. Furthermore, the action of spin-labeled stearates appeared to be on the exterior of the plasma membrane rather than the interior. These results illustrate the presence of multilipid domains and the importance of selected lipids and lipid-protein interactions in the adenylate cyclase-cyclic AMP system. Thymocyte adenylate cyclase is described in terms of a current model for membrane proteins.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources