Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun;72(2):339-49.
doi: 10.1016/j.ejpb.2008.07.012. Epub 2008 Jul 27.

Barrier functions and paracellular integrity in human cell culture models of the proximal respiratory unit

Affiliations

Barrier functions and paracellular integrity in human cell culture models of the proximal respiratory unit

Christine Pohl et al. Eur J Pharm Biopharm. 2009 Jun.

Abstract

Airway epithelial cells provide a barrier to the translocation of inhaled materials. Tight (TJ) and adherens junctions (AJ) play a key role in maintaining barrier functions, and are responsible for the selective transport of various substances through the paracellular pathway. In this study we compared a bronchial cell line (16HBE14o-) and primary bronchial cells (HBEC), both cocultivated with the fibroblast cell line Wi-38, with respect to their structural differentiation and their reaction to cytokine stimulation. HBEC formed a pseudostratified epithelial layer and expressed TJ and AJ proteins after 2 weeks in coculture. Mucus-producing and ciliated cells were found within 24 days. Additionally, a beating activity of the ciliated HBEC (14-19Hz) could be detected. 16HBE14o- in coculture showed a multilayered growth without differentiation to a pseudostratified airway epithelium. Simultaneous exposure to TNF-alpha- and IFN-gamma-induced significant changes in barrier function and paracellular permeability in the cocultures of HBEC/Wi-38 but not in the 16HBE14o-/Wi-38. In summary, HBEC in coculture mimic the structure of native polarized bronchial epithelium showing basal, mucus-producing and ciliated cells. Our system provides an opportunity to examine the factors that influence barrier and mucociliary function of bronchial epithelium within a time frame of 3 weeks up to 3 months in an in vivo-like differentiated model.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources