Association of FGFR4 genetic polymorphisms with prostate cancer risk and prognosis
- PMID: 18762813
- PMCID: PMC2790323
- DOI: 10.1038/pcan.2008.46
Association of FGFR4 genetic polymorphisms with prostate cancer risk and prognosis
Abstract
The fibroblast growth factor receptor 4 (FGFR4) is thought to be involved in many critical cellular processes and has been associated with prostate cancer risk. Four single nucleotide polymorphisms (SNPs) within or near FGFR4 were analyzed in a population-based study of 1458 prostate cancer patients and 1352 age-matched controls. We found no evidence to suggest that any of the FGFR4 SNP genotypes were associated with prostate cancer risk or with disease aggressiveness, Gleason score or stage. A weak association was seen between rs351855 and prostate cancer-specific mortality. Subset analysis of cases that had undergone radical prostatectomy revealed an association between rs351855 and prostate cancer risk. Although our results confirm an association between FGFR4 and prostate cancer risk in radical prostatectomy cases, they suggest that the role of FGFR4 in disease risk and outcomes at a population-based level appears to be minor.
Figures
References
-
- Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M. Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996;271(25):15292–15297. - PubMed
-
- Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;103(2):211–225. - PubMed
-
- Acevedo VD, Gangula RD, Freeman KW, Li R, Zhang Y, Wang F, Ayala GE, Peterson LE, Ittmann M, Spencer DM. Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell. 2007;12(6):559–571. - PubMed
-
- Dorkin TJ, Robinson MC, Marsh C, Bjartell A, Neal DE, Leung HY. FGF8 over-expression in prostate cancer is associated with decreased patient survival and persists in androgen independent disease. Oncogene. 1999;18(17):2755–2761. - PubMed
-
- Freeman KW, Gangula RD, Welm BE, Ozen M, Foster BA, Rosen JM, Ittmann M, Greenberg NM, Spencer DM. Conditional activation of fibroblast growth factor receptor (FGFR) 1, but not FGFR2, in prostate cancer cells leads to increased osteopontin induction, extracellular signal-regulated kinase activation, and in vivo proliferation. Cancer Res. 2003;63(19):6237–6243. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous