Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;100(5):2684-701.
doi: 10.1152/jn.90427.2008. Epub 2008 Sep 3.

Ionic factors governing rebound burst phenotype in rat deep cerebellar neurons

Affiliations
Free article

Ionic factors governing rebound burst phenotype in rat deep cerebellar neurons

Michael L Molineux et al. J Neurophysiol. 2008 Nov.
Free article

Abstract

Large diameter cells in rat deep cerebellar nuclei (DCN) can be distinguished according to the generation of a transient or weak rebound burst and the expression of T-type Ca(2+) channel isoforms. We studied the ionic basis for the distinction in burst phenotypes in rat DCN cells in vitro. Following a hyperpolarization, transient burst cells generated a high-frequency spike burst of < or = 450 Hz, whereas weak burst cells generated a lower-frequency increase (<140 Hz). Both cell types expressed a low voltage-activated (LVA) Ca(2+) current near threshold for rebound burst discharge (-50 mV) that was consistent with T-type Ca(2+) current, but on average 7 times more current was recorded in transient burst cells. The number and frequency of spikes in rebound bursts was tightly correlated with the peak Ca(2+) current at -50 mV, showing a direct relationship between the availability of LVA Ca(2+) current and spike output. Transient burst cells exhibited a larger spike depolarizing afterpotential that was insensitive to blockers of voltage-gated Na(+) or Ca(2+) channels. In comparison, weak burst cells exhibited larger afterhyperpolarizations (AHPs) that reduced cell excitability and rebound spike output. The sensitivity of AHPs to Ca(2+) channel blockers suggests that both LVA and high voltage-activated (HVA) Ca(2+) channels trigger AHPs in weak burst compared with only HVA Ca(2+) channels in transient burst cells. The two burst phenotypes in rat DCN cells thus derive in part from a difference in the availability of LVA Ca(2+) current following a hyperpolarization and a differential activation of AHPs that establish distinct levels of membrane excitability.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources