A brilliant disguise for self RNA: 5'-end and internal modifications of primary transcripts suppress elements of innate immunity
- PMID: 18769134
- PMCID: PMC2809118
- DOI: 10.4161/rna.5.3.6839
A brilliant disguise for self RNA: 5'-end and internal modifications of primary transcripts suppress elements of innate immunity
Abstract
Interferon inducible protein kinase PKR is a component of innate immunity and mediates antiviral actions by recognizing pathogen associated molecular patterns (PAMPs). A well-known activator of PKR is long dsRNA, which can be produced during viral replication. Our recent results indicate that PKR can also be activated by short stem-loop RNA in a 5'-triphosphate-dependent fashion. A 5'-triphosphate is present primarily in foreign RNAs such as viral and bacterial transcripts, while a non-activating 5'-cap or 5'-monophosphate is present in most cellular RNAs. Additional studies indicate that internal RNA modifications and non-Watson-Crick motifs also repress PKR activation, and do so in an RNA structure-specific fashion. Interestingly, self-RNAs have more nucleoside modifications than non-self RNAs. Internal and 5'-end RNA modifications have repressive effects on other innate immune sensors as well, including TLR3, TLR7, TLR8, and RIG-I, suggesting that nucleoside modifications suppress innate immunity on a wide scale.
Figures
References
-
- Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem. 1998;67:227–64. - PubMed
-
- Thompson AJ, Locarnini SA. Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunol Cell Biol. 2007;85:435–45. - PubMed
-
- Kariko K, Weissman D. Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: implication for therapeutic RNA development. Curr Opin Drug Discov Devel. 2007;10:523–32. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous