Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec;22(12):2230-9.
doi: 10.1038/leu.2008.224. Epub 2008 Sep 4.

Malignant Tregs express low molecular splice forms of FOXP3 in Sézary syndrome

Affiliations

Malignant Tregs express low molecular splice forms of FOXP3 in Sézary syndrome

T Krejsgaard et al. Leukemia. 2008 Dec.

Abstract

Sézary syndrome (SS) is an aggressive variant of cutaneous T-cell lymphoma. During disease progression, immunodeficiency develops; however, the underlying molecular and cellular mechanisms are not fully understood. Here, we study the regulatory T cell (Treg) function and the expression of FOXP3 in SS. We demonstrate that malignant T cells in 8 of 15 patients stain positive with an anti-FOXP3 antibody. Western blotting analysis shows expression of two low molecular splice forms of FOXP3, but not of wild-type (wt) FOXP3. The malignant T cells produce interleukin-10 and TGF-beta and suppress the growth of non-malignant T cells. The Treg phenotype and the production of suppressive cytokines are driven by aberrant activation of Jak3 independent of the FOXP3 splice forms. In contrast to wt FOXP3, the low molecular splice forms of FOXP3 have no inhibitory effect on nuclear factor-kappaB (NF-kappaB) activity in reporter assays which is in keeping with a constitutive NF-kappaB activity in the malignant T cells. In conclusion, we show that the malignant T cells express low molecular splice forms of FOXP3 and function as Tregs. Furthermore, we provide evidence that FOXP3 splice forms are functionally different from wt FOXP3 and not involved in the execution of the suppressive function. Thus, this is the first description of FOXP3 splice forms in human disease.

PubMed Disclaimer

Publication types

MeSH terms