Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep;51(9):749-56.
doi: 10.1139/G08-061.

Genetic recombination in Sorghum bicolor x S. macrospermum interspecific hybrids

Affiliations

Genetic recombination in Sorghum bicolor x S. macrospermum interspecific hybrids

Les C Kuhlman et al. Genome. 2008 Sep.

Abstract

Sorghum has been improved by public and private breeding programs utilizing germplasm mostly from within the species Sorghum bicolor. Until recently, cross-incompatibilities have prevented hybridization of S. bicolor with most other species within the genus Sorghum. Utilizing germplasm homozygous for the iap allele, hybrids were readily produced between S. bicolor (2n = 20; AAB1B1) and S. macrospermum (2n = 40; WWXXYYZZ). These hybrids were intermediate to the parents in chromosome number (2n = 30) and overall morphology. Meiosis in both parents was regular; S. bicolor had 10 bivalents per pollen mother cell (PMC) and S. macrospermum had an average of 19.96 bivalents per PMC. Six hybrids were studied cytologically and meiosis was irregular, with the chromosomes associating primarily as univalents and bivalents. There was an average of 3.54 bivalents per PMC, with a range of 0-8 bivalents, most of which were rods (98%). Using FISH (fluorescent in situ hybridization), moderate levels (2.6 II per PMC) of allosyndetic recombination were observed. Genomic relationships were sufficient to assign S. macrospermum the genomic formula AAB1B1YYZZ (Y and Z remain unknown). Allosyndetic recombination in the interspecific hybrids indicates that introgression through genetic recombination should be possible if viable backcrosses can be recovered.

PubMed Disclaimer

MeSH terms