Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus
- PMID: 18776029
- PMCID: PMC2576683
- DOI: 10.1128/AEM.00968-08
Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus
Abstract
Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO(2), and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to coutilize glucose and xylose make this bacterium an attractive candidate for microbial bioenergy production. Here, the complete genome sequence of C. saccharolyticus, consisting of a 2,970,275-bp circular chromosome encoding 2,679 predicted proteins, is described. Analysis of the genome revealed that C. saccharolyticus has an extensive polysaccharide-hydrolyzing capacity for cellulose, hemicellulose, pectin, and starch, coupled to a large number of ABC transporters for monomeric and oligomeric sugar uptake. The components of the Embden-Meyerhof and nonoxidative pentose phosphate pathways are all present; however, there is no evidence that an Entner-Doudoroff pathway is present. Catabolic pathways for a range of sugars, including rhamnose, fucose, arabinose, glucuronate, fructose, and galactose, were identified. These pathways lead to the production of NADH and reduced ferredoxin. NADH and reduced ferredoxin are subsequently used by two distinct hydrogenases to generate hydrogen. Whole-genome transcriptome analysis revealed that there is significant upregulation of the glycolytic pathway and an ABC-type sugar transporter during growth on glucose and xylose, indicating that C. saccharolyticus coferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks is a highly desirable feature of this lignocellulose-utilizing, biofuel-producing bacterium.
Figures




Similar articles
-
Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences.Appl Environ Microbiol. 2009 Dec;75(24):7718-24. doi: 10.1128/AEM.01959-09. Epub 2009 Oct 9. Appl Environ Microbiol. 2009. PMID: 19820143 Free PMC article.
-
Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor.Appl Environ Microbiol. 2010 Dec;76(24):8084-92. doi: 10.1128/AEM.01400-10. Epub 2010 Oct 22. Appl Environ Microbiol. 2010. PMID: 20971878 Free PMC article.
-
Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus.J Bacteriol. 2011 Mar;193(6):1483-4. doi: 10.1128/JB.01515-10. Epub 2011 Jan 7. J Bacteriol. 2011. PMID: 21216991 Free PMC article.
-
Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives.Life (Basel). 2013 Jan 17;3(1):52-85. doi: 10.3390/life3010052. Life (Basel). 2013. PMID: 25371332 Free PMC article. Review.
-
Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory.Microb Cell Fact. 2010 Nov 22;9:89. doi: 10.1186/1475-2859-9-89. Microb Cell Fact. 2010. PMID: 21092203 Free PMC article. Review.
Cited by
-
Novel monosaccharide fermentation products in Caldicellulosiruptor saccharolyticus identified using NMR spectroscopy.Biotechnol Biofuels. 2013 Apr 3;6(1):47. doi: 10.1186/1754-6834-6-47. Biotechnol Biofuels. 2013. PMID: 23552326 Free PMC article.
-
Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.Biotechnol Biofuels. 2013 Feb 28;6(1):31. doi: 10.1186/1754-6834-6-31. Biotechnol Biofuels. 2013. PMID: 23448304 Free PMC article.
-
Biofilm formation by designed co-cultures of Caldicellulosiruptor species as a means to improve hydrogen productivity.Biotechnol Biofuels. 2015 Feb 12;8:19. doi: 10.1186/s13068-015-0201-7. eCollection 2015. Biotechnol Biofuels. 2015. PMID: 25722741 Free PMC article.
-
Absence of diauxie during simultaneous utilization of glucose and Xylose by Sulfolobus acidocaldarius.J Bacteriol. 2011 Mar;193(6):1293-301. doi: 10.1128/JB.01219-10. Epub 2011 Jan 14. J Bacteriol. 2011. PMID: 21239580 Free PMC article.
-
Whither the genus Caldicellulosiruptor and the order Thermoanaerobacterales: phylogeny, taxonomy, ecology, and phenotype.Front Microbiol. 2023 Aug 3;14:1212538. doi: 10.3389/fmicb.2023.1212538. eCollection 2023. Front Microbiol. 2023. PMID: 37601363 Free PMC article.
References
-
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. - PubMed
-
- Badger, J. H., and G. J. Olsen. 1999. CRITICA: coding region identification tool invoking comparative analysis. Mol. Biol. Evol. 16:512-524. - PubMed
-
- Barrangou, R., C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D. A. Romero, and P. Horvath. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709-1712. - PubMed
-
- Barriere, C., M. Veiga-da-Cunha, N. Pons, E. Guedon, S. A. van Hijum, J. Kok, O. P. Kuipers, D. S. Ehrlich, and P. Renault. 2005. Fructose utilization in Lactococcus lactis as a model for low-GC gram-positive bacteria: its regulator, signal, and DNA-binding site. J. Bacteriol. 187:3752-3761. - PMC - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases