Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Oct 10;103(8):796-803.
doi: 10.1161/CIRCRESAHA.107.172718. Epub 2008 Sep 5.

The Wnt antagonist Dickkopf-1 mobilizes vasculogenic progenitor cells via activation of the bone marrow endosteal stem cell niche

Affiliations
Free article

The Wnt antagonist Dickkopf-1 mobilizes vasculogenic progenitor cells via activation of the bone marrow endosteal stem cell niche

Alexandra Aicher et al. Circ Res. .
Free article

Abstract

Therapeutic mobilization of vasculogenic progenitor cells is a novel strategy to enhance neovascularization for tissue repair. Prototypical mobilizing agents such as granulocyte colony-stimulating factor mobilize vasculogenic progenitor cells from the bone marrow concomitantly with inflammatory cells. In the bone marrow, mobilization is regulated in the stem cell niche, in which endosteal cells such as osteoblasts and osteoclasts play a key role. Because Wnt signaling regulates endosteal cells, we examined whether the Wnt signaling antagonist Dickkopf (Dkk)-1 is involved in the mobilization of vasculogenic progenitor cells. Using TOP-GAL transgenic mice to determine activation of beta-catenin, we demonstrate that Dkk-1 regulates endosteal cells in the bone marrow stem cell niche and subsequently mobilizes vasculogenic and hematopoietic progenitors cells without concomitant mobilization of inflammatory neutrophils. The mobilization of vasculogenic progenitors required the presence of functionally active osteoclasts, as demonstrated in PTPepsilon-deficient mice with defective osteoclast function. Mechanistically, Dkk-1 induced the osteoclast differentiation factor RANKL, which subsequently stimulated the release of the major bone-resorbing protease cathepsin K. Eventually, the Dkk-1-induced mobilization of bone marrow-derived vasculogenic progenitors enhanced neovascularization in Matrigel plugs. Thus, these data show that Dkk-1 is a mobilizer of vasculogenic progenitors but not of inflammatory cells, which could be of great clinical importance to enhance regenerative cell therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources