Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Dec;9(4):329-43.
doi: 10.1007/s11154-008-9101-5.

Beta-cell failure as a complication of diabetes

Affiliations
Review

Beta-cell failure as a complication of diabetes

K J Chang-Chen et al. Rev Endocr Metab Disord. 2008 Dec.

Abstract

Type 2 diabetes mellitus is a complex disease characterized by beta-cell failure in the setting of insulin resistance. In early stages of the disease, pancreatic beta-cells adapt to insulin resistance by increasing mass and function. As nutrient excess persists, hyperglycemia and elevated free fatty acids negatively impact beta-cell function. This happens by numerous mechanisms, including the generation of reactive oxygen species, alterations in metabolic pathways, increases in intracellular calcium and the activation of endoplasmic reticulum stress. These processes adversely affect beta-cells by impairing insulin secretion, decreasing insulin gene expression and ultimately causing apoptosis. In this review, we will first discuss the regulation of beta-cell mass during normal conditions. Then, we will discuss the mechanisms of beta-cell failure, including glucotoxicity, lipotoxicity and endoplasmic reticulum stress. Further research into mechanisms will reveal the key modulators of beta-cell failure and thus identify possible novel therapeutic targets. Type 2 diabetes mellitus is a multifactorial disease that has greatly risen in prevalence in part due to the obesity and inactivity that characterize the modern Western lifestyle. Pancreatic beta-cells possess the potential to greatly expand their function and mass in both physiologic and pathologic states of nutrient excess and increased insulin demand. beta-cell response to nutrient excess occurs by several mechanisms, including hypertrophy and proliferation of existing beta-cells, increased insulin production and secretion, and formation of new beta-cells from progenitor cells [1, 2]. Failure of pancreatic beta-cells to adequately expand in settings of increased insulin demand results in hyperglycemia and diabetes. In this review, we will first discuss the factors involved in beta-cell growth and then discuss the mechanisms by which beta-cell expansion fails and leads to beta-cell failure and diabetes (Fig. 1).

PubMed Disclaimer

Figures

Figure 1
Figure 1
The mechanisms by which β-cell failure an apoptosis occur are complex, not completely unraveled and involve the interplay of numerous factors and conditions. These factors are summarized in Figure 1. Glucotoxicity and lipotoxicity lead to the production of ROS, which activate JNK. JNK activity leads to a decrease in IRS signaling and may directly be involved in decreased Pdx-1 activity by nucleus to cytoplasmic translocation [179]. In addition, glucose and FA have both been found to induce ER stress. Chronic glucose elevation inhibits FA oxidation and favors the generation of ceramide and lipid partitioning which ultimately results in β-cell dysfunction and apoptosis. AMPK activation promotes fatty acid oxidation by phosphorylation and inhibition of acetyl-Coa carboxylase or via down regulation of the transcription factor sterol-regulatory-element-binding-protein-1c (SREBP1c) and subsequent decreases in acetyl-Coa carboxylase. Glucose and FA also activate the UPR response and induce ER stress. The ER stress response and its effectors are activated in response to misfolded proteins in order to protect β-cell from apoptosis; however, activation of these processes under conditions of long-term elevation of FFA and glucose can lead to β-cell dysfunction and ultimately apoptosis. Activation of ER stress leads to inhibition of insulin mRNA and protein expression and may also be pro-apoptotic. The mechanisms for induction of apoptosis by ER stress are not completely known but induction of CHOP is an important component. In addition, induction of ATF3 and SREBP can downregulate IRS signaling by repressing IRS2 transcription. One interesting finding is that inhibition of IRS signaling seems to be a common pathway induced by the majority of the mechanisms described for β-cell failure. On additional event is the increase in mTOR signaling by nutrient excess (glucose). This results in negative feed back inhibition on IRS1 and possibly IRS2 by activation of S6K signaling. The decrease in IRS signaling induces GSK3β and FoxO1 function. Activation of these molecules ultimately reduces Pdx1 levels and increases the levels of the cell cycle inhibitor p27.

References

    1. Bonner-Weir S, Deery D, Leahy JL, Weir GC. Compensatory growth of pancreatic beta-cells in adult rats after short-term glucose infusion. Diabetes. 1989;38:49–53. - PubMed
    1. Bruning JC, Winnay J, Bonner-Weir S, Taylor SI, Accili D, Kahn CR. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell. 1997;88:561–572. - PubMed
    1. Parsons JA, Brelje TC, Sorenson RL. Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology. 1992;130:1459–1466. - PubMed
    1. Scaglia L, Smith FE, Bonner-Weir S. Apoptosis contributes to the involution of beta cell mass in the post partum rat pancreas. Endocrinology. 1995;136:5461–5468. - PubMed
    1. Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren J-M, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF. Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 1998;391:900–903. - PubMed

MeSH terms