Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep;28(3):574-87.
doi: 10.1002/jmri.21474.

Visualization of the protective ability of a free radical trapping compound against rat C6 and F98 gliomas with diffusion tensor fiber tractography

Affiliations

Visualization of the protective ability of a free radical trapping compound against rat C6 and F98 gliomas with diffusion tensor fiber tractography

Taketoshi Asanuma et al. J Magn Reson Imaging. 2008 Sep.

Abstract

Purpose: To apply fiber tractography to assess the effect of a possible antiglioma drug, phenyl N-tert-butyl nitrone (PBN), on glioma-affected neuronal fibers. The fiber tractography method was able to differentiate between different tumor types, such as the C6 and F98 rat glioma models.

Materials and methods: C6 or F98 cells were intracranially injected into the cortex of male Fischer 344 rats. PBN treatment was initiated before or after cell implantation. Tumor growth was monitored with diffusion tensor imaging (DTI) and fiber tractography using diffusion-weighting gradients in 30 noncolinear directions.

Results: Although proton density-weighted (PDw) and T2-weighted (T2w) images did not show any difference between C6 and F98 gliomas without edema, the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps were able to discriminate between these two tumor models. Fiber tractography was used to visualize C6 glioma-induced ischemia of tumor-surrounding tissues, whereas F98 glioma was found to infiltrate and penetrate into the corpus callosum (CC). During glioma growth, neuronal fibers were found to disappear at the border regions between the tumor and surrounding tissues. PBN treatment was shown to inhibit glioma growth with accompanying changes in the surrounding tissue.

Conclusion: By noninvasively monitoring the degree of neuronal fiber integrity and connectivity with the use of neuronal fiber tractography, we were able to evaluate the protective effect of PBN against invasive glioma growth in rat brains. PBN provided protection of the neuronal fibers against tumor-induced ischemia and tumor invasion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources