Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;295(5):E1076-83.
doi: 10.1152/ajpendo.90408.2008. Epub 2008 Sep 9.

Time course of high-fat diet-induced reductions in adipose tissue mitochondrial proteins: potential mechanisms and the relationship to glucose intolerance

Affiliations
Free article

Time course of high-fat diet-induced reductions in adipose tissue mitochondrial proteins: potential mechanisms and the relationship to glucose intolerance

Lindsey N Sutherland et al. Am J Physiol Endocrinol Metab. 2008 Nov.
Free article

Abstract

Increasing evidence suggests that reduced adipose tissue mitochondrial content is associated with the pathogenesis of type 2 diabetes. These investigations have utilized severely insulin-resistant rodent models. Thus, it is difficult to ascertain the potential mechanisms that initiate these changes and whether reductions in adipose mitochondria are an initiating event in the development of impaired glucose homeostasis. Thus, we sought to determine the time course of high-fat diet-induced reductions of mitochondrial content in epididymal adipose tissue in relation to changes in purported mediators of mitochondrial biogenesis and the development of impaired glucose homeostasis. Male Wistar rats were fed a high-fat diet ( approximately 59% of kcals from fat) for 2, 4, or 6 wk. Six weeks of high-fat feeding resulted in reductions in CORE I, COX IV, cytochrome c, HSP60, relative mtDNA copy number, and PGC-1alpha expression. These changes were not associated with decreases in eNOS and AMPK or increases in markers of oxidative stress. Interestingly, ex vivo treatment of adipose tissue cultures with palmitate led to decreases in PGC-1alpha expression and COX IV and CORE I protein content as observed in vivo. Thus, the high-fat diet-induced reductions in adipose tissue mitochondrial proteins may be mediated by increases in plasma fatty acids. Importantly, reductions in adipose tissue mitochondrial content occurred after the development of impaired glucose homeostasis. Thus, reductions in adipose tissue mitochondrial proteins are most likely not a causal event in the development of impaired glucose homeostasis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources