Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Aug 26;1067(2):111-22.
doi: 10.1016/0005-2736(91)90032-4.

Influence of phloretin and alcohols on barrier defects in the erythrocyte membrane caused by oxidative injury and electroporation

Affiliations

Influence of phloretin and alcohols on barrier defects in the erythrocyte membrane caused by oxidative injury and electroporation

B Deuticke et al. Biochim Biophys Acta. .

Abstract

Oxidative damage by diamide, periodate and oxygen-derived reactive species, but also exposure to electroporation induce in the erythrocyte membrane dynamic, presumably fluctuating, defects having the properties of aqueous holes with definable radii and selectivities. These leaks, which can be quantified by measuring tracer fluxes or rates of colloid-osmotic lysis, are here shown to be inhibited by phloretin and a small number of related phenol compounds (phenolphthalein, hydroxyacetophenones, nitrophenol), while a host of other 'membrane-active' agents is not effective in this respect. I50 values range from about 200 microM for phloretin and phenolphthalein to about 10 mM for 4-nitrophenol. Inhibition by phloretin is reversible, not competitive and not related in its extent to the extent of leakiness. In contrast, the enhancement of transbilayer mobility of amphiphilic lipid probes, which invariably goes along with leak formation of the type described, is not affected by phloretin. Aliphatic alcohols (hexanol, butanol) have an amplifying effect on leaks induced by oxidative damage but do not affect leaks induced by electroporation. The alcohol-amplified leaks maintain the properties of aqueous holes as indicated by a low activation energy of leak fluxes. Since both, inhibition and stimulation of leak fluxes do not go along with appreciable changes of the apparent radii of the aqueous holes, changes in the dynamics (opening and closing) of the defects are proposed to underly the effects of phloretin and alkanols. The membrane lipid domain is likely to be the site of the leaks and of their modulation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources