Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan;3(1):13-30.
doi: 10.1038/ismej.2008.81. Epub 2008 Sep 11.

Phenology of high-elevation pelagic bacteria: the roles of meteorologic variability, catchment inputs and thermal stratification in structuring communities

Affiliations
Free article

Phenology of high-elevation pelagic bacteria: the roles of meteorologic variability, catchment inputs and thermal stratification in structuring communities

Craig E Nelson. ISME J. 2009 Jan.
Free article

Abstract

Many eukaryotic communities exhibit predictable seasonality in species composition, but such phenological patterns are not well-documented in bacterial communities. This study quantified seasonal variation in the community composition of bacterioplankton in a high-elevation lake in the Sierra Nevada of California over a 3-year period of 2004-2006. Bacterioplankton exhibited consistent phenological patterns, with distinct, interannually recurring community types characteristic of the spring snowmelt, ice-off and fall-overturn periods in the lake. Thermal stratification was associated with the emergence of specific communities each summer and increased community heterogeneity throughout the water column. Two key environmental variables modulated by regional meteorologic variation, lake residence time and thermal stability, predicted the timing of occurrence of community types each year with 75% accuracy, and each corresponded with different aspects of variation in community composition (orthogonal ordination axes). Seasonal variation in dissolved organic matter source was characterized fluorometrically in 2005 and was highly correlated with overall variation in bacterial community structure (r(Mantel)=0.75, P<0.001) and with the relative contributions of specific phylotypes within the Cyanobacteria, Actinobacteria and beta-Proteobacteria. The seasonal dynamics of bacterial clades (tracked through coupling of randomized clone sequence libraries to restriction fragment length polymorphism fingerprints) matched previous results from alpine lakes and were variously related to solute inputs, thermal stability and temperature. Taken together, these results describe a phenology of high-elevation bacterioplankton communities linked to climate-driven physical and chemical lake characteristics already known to regulate eukaryotic plankton community structure.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources