Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Fall;26(3):224-32.
doi: 10.1111/j.1755-5922.2008.00052.x.

Activation of HtrA2, a mitochondrial serine protease mediates apoptosis: current knowledge on HtrA2 mediated myocardial ischemia/reperfusion injury

Affiliations
Free article
Review

Activation of HtrA2, a mitochondrial serine protease mediates apoptosis: current knowledge on HtrA2 mediated myocardial ischemia/reperfusion injury

Md Shenuarin Bhuiyan et al. Cardiovasc Ther. 2008 Fall.
Free article

Abstract

A plethora of apoptotic stimuli converge on the mitochondria and affect their membrane integrity, thereby eliciting release of multiple death-promoting factors residing in the mitochondrial intermembrane space into the cytosol. Among the death-promoting factors, a serine protease, high temperature requirement A2 (HtrA2) has drawn attention as a key player in the apoptosis pathways in different pathological conditions including myocardial ischemia/reperfusion injury. Heart ischemia/reperfusion results in HtrA2 translocation from the mitochondria to the cytosol, where it promotes cardiomyocyte apoptosis via a protease activity-dependent and caspase-mediated pathway. Once released, cytosolic HtrA2 causes X-chromosome-linked inhibitor of apoptosis protein (XIAP) degradation, caspase activation, and subsequent apoptosis. Consistent with the hypothesis, inhibition of HtrA2 improved postischemic myocardial contractile functions along with reduction of myocardial infarct size. The precise mechanism underlying HtrA2-induced apoptosis in mammalian cells has been studied through biochemical, structural, and genetic studies, in which HtrA2 promotes proteolytic activation of caspases through multiple pathways in heart ischemia. Therapeutic interventions that inhibit HtrA2 expression, translocation, or protease activity (such as by using the ucf-101 inhibitor) may provide an attractive therapeutics in the treatment of cardiovascular diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources