Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells
- PMID: 18787018
- PMCID: PMC2630894
- DOI: 10.1210/en.2008-0984
Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells
Abstract
Argonaute (Ago) 2 is the catalytic engine of mammalian RNA interference, but little is known concerning the regulation of Ago2 by cell-signaling pathways. In this study we show that expression of Ago2, but not Ago1, Ago3, or Ago4, is elevated in estrogen receptor (ER) alpha-negative (ERalpha(-)) vs. ERalpha-positive (ERalpha+) breast cancer cell lines, and in ERalpha(-) breast tumors. In MCF-7 cells the low level of Ago2 was found to be dependent upon active ERalpha/estrogen signaling. Interestingly, the high expression of Ago2 in ERalpha(-) cells was severely blunted by inhibition of the epidermal growth factor (EGF) receptor/MAPK signaling pathway, using either a pharmacological MAPK kinase inhibitor, U0126, or a small interfering RNA directed against EGF receptor. Half-life studies using cycloheximide indicated that EGF enhanced, whereas U0126 decreased, Ago2 protein stability. Furthermore, a proteosome inhibitor, MG132, blocked Ago2 protein turnover. The functional consequences of elevated Ago2 levels were examined by stable transfection of ERalpha+ MCF-7 cells with full-length and truncated forms of Ago2. The full-length Ago2 transfectants displayed enhanced proliferation, reduced cell-cell adhesion, and increased migratory ability, as shown by proliferation, homotypic aggregation, and wound healing assays, respectively. Overexpression of full-length Ago2, but not truncated forms of Ago2 or an empty vector control, reduced the levels of E-cadherin, beta-catenin, and beta-actin, as well as enhanced endogenous miR-206 activity. These data indicate that Ago2 is regulated at both the transcriptional and posttranslational level, and also implicate Ago2 and enhanced micro-RNA activity in the tumorigenic progression of breast cancer cell lines.
Figures





References
-
- Meister G, Tuschl T 2004 Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349 - PubMed
-
- Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS 2005 Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15:331–341 - PubMed
-
- Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R 2004 The microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240 - PubMed
-
- Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W 2005 Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309:1573–1576 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials