Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec;41(6):423-30.
doi: 10.1677/JME-08-0024. Epub 2008 Sep 11.

The role of redox signaling in cardiac hypertrophy induced by experimental hyperthyroidism

Affiliations

The role of redox signaling in cardiac hypertrophy induced by experimental hyperthyroidism

A S R Araujo et al. J Mol Endocrinol. 2008 Dec.

Abstract

This study was conducted to test whether oxidative stress activates the intracellular protein kinase B (AKT1) signaling pathway, which culminates with cardiac hypertrophy in experimental hyperthyroidism. Male Wistar rats were divided into four groups: control, vitamin E, thyroxine (T(4)), and T(4)+vitamin E. Hyperthyroidism was induced by T(4) administration (12 mg/l in drinking water for 28 days). Vitamin E treatment was given during the same period via s.c. injections (20 mg/kg per day). Morphometric and hemodynamic parameters were evaluated at the end of the 4-week treatment period. Protein oxidation, redox state (reduced glutathione, GSH/glutathione dissulfide, GSSG), vitamin C, total radical-trapping antioxidant potential (TRAP), hydrogen peroxide (H2O2), and nitric oxide metabolites (NO(X)) were measured in heart homogenates. The p-AKT1/AKT1 ratio, p-glycogen-synthase kinase (GSK)3B/GSK3B ratio, FOS, and JUN myocardial protein expression were also quantified by western blot after 4 weeks. Increases in biochemical parameters, such as protein oxidation (41%), H2O2 (62%), and NO(X) (218%), and increase in the left ventricular end-diastolic pressure were observed in the T(4) group. T(4) treatment also caused a decrease in GSH/GSSG ratio (83%), vitamin C (34%), and TRAP (55%). These alterations were attenuated by vitamin E administration to the hyperthyroid rats. Expression of p-AKT1/AKT1, p-GSK3B/GSK3B, FOS, and JUN were elevated in the T(4) group (by 69, 37, 130, and 33% respectively), whereas vitamin E administration promoted a significant reduction in their expression. These results indicate that oxidative stress plays an important role in cardiac hypertrophy, and suggest redox activation of AKT1 and JUN/FOS signaling pathways with H2O2 acting as a possible intracellular mediator in this adaptive response to experimental hyperthyroidism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources