Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus
- PMID: 18787083
- PMCID: PMC2556262
- DOI: 10.1101/gr.076075.108
Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus
Abstract
Inter-specific hybridization leading to abrupt speciation is a well-known, common mechanism in angiosperm evolution; only recently, however, have similar hybridization and speciation mechanisms been documented to occur frequently among the closely related group of sensu stricto Saccharomyces yeasts. The economically important lager beer yeast Saccharomyces pastorianus is such a hybrid, formed by the union of Saccharomyces cerevisiae and Saccharomyces bayanus-related yeasts; efforts to understand its complex genome, searching for both biological and brewing-related insights, have been underway since its hybrid nature was first discovered. It had been generally thought that a single hybridization event resulted in a unique S. pastorianus species, but it has been recently postulated that there have been two or more hybridization events. Here, we show that there may have been two independent origins of S. pastorianus strains, and that each independent group--defined by characteristic genome rearrangements, copy number variations, ploidy differences, and DNA sequence polymorphisms--is correlated with specific breweries and/or geographic locations. Finally, by reconstructing common ancestral genomes via array-CGH data analysis and by comparing representative DNA sequences of the S. pastorianus strains with those of many different S. cerevisiae isolates, we have determined that the most likely S. cerevisiae ancestral parent for each of the independent S. pastorianus groups was an ale yeast, with different, but closely related ale strains contributing to each group's parentage.
Figures




Similar articles
-
Analysis of the constitution of the beer yeast genome by PCR, sequencing and subtelomeric sequence hybridization.Int J Syst Evol Microbiol. 2001 Jul;51(Pt 4):1607-1618. doi: 10.1099/00207713-51-4-1607. Int J Syst Evol Microbiol. 2001. PMID: 11491364
-
Himalayan Saccharomyces eubayanus Genome Sequences Reveal Genetic Markers Explaining Heterotic Maltotriose Consumption by Saccharomyces pastorianus Hybrids.Appl Environ Microbiol. 2019 Oct 30;85(22):e01516-19. doi: 10.1128/AEM.01516-19. Print 2019 Nov 15. Appl Environ Microbiol. 2019. PMID: 31519660 Free PMC article.
-
Genome sequence of the lager brewing yeast, an interspecies hybrid.DNA Res. 2009 Apr;16(2):115-29. doi: 10.1093/dnares/dsp003. Epub 2009 Mar 4. DNA Res. 2009. PMID: 19261625 Free PMC article.
-
Lager-brewing yeasts in the era of modern genetics.FEMS Yeast Res. 2019 Nov 1;19(7):foz063. doi: 10.1093/femsyr/foz063. FEMS Yeast Res. 2019. PMID: 31553794 Free PMC article. Review.
-
Brewing up a storm: The genomes of lager yeasts and how they evolved.Biotechnol Adv. 2017 Jul;35(4):512-519. doi: 10.1016/j.biotechadv.2017.03.003. Epub 2017 Mar 8. Biotechnol Adv. 2017. PMID: 28284994 Review.
Cited by
-
Genomic insights into the Saccharomyces sensu stricto complex.Genetics. 2015 Feb;199(2):281-91. doi: 10.1534/genetics.114.173633. Genetics. 2015. PMID: 25657346 Free PMC article. Review.
-
The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts.Mol Biol Evol. 2015 Nov;32(11):2818-31. doi: 10.1093/molbev/msv168. Epub 2015 Aug 11. Mol Biol Evol. 2015. PMID: 26269586 Free PMC article.
-
sppIDer: A Species Identification Tool to Investigate Hybrid Genomes with High-Throughput Sequencing.Mol Biol Evol. 2018 Nov 1;35(11):2835-2849. doi: 10.1093/molbev/msy166. Mol Biol Evol. 2018. PMID: 30184140 Free PMC article.
-
On the complexity of the Saccharomyces bayanus taxon: hybridization and potential hybrid speciation.PLoS One. 2014 Apr 4;9(4):e93729. doi: 10.1371/journal.pone.0093729. eCollection 2014. PLoS One. 2014. PMID: 24705561 Free PMC article.
-
Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts.Appl Environ Microbiol. 2017 May 17;83(11):e03206-16. doi: 10.1128/AEM.03206-16. Print 2017 Jun 1. Appl Environ Microbiol. 2017. PMID: 28341679 Free PMC article. Review.
References
-
- Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., Gish W., Miller W., Myers E.W., Lipman D.J., Miller W., Myers E.W., Lipman D.J., Myers E.W., Lipman D.J., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. - PubMed
-
- Awad I.A., Rees C.A., Hernandez-Boussard T., Ball C.A., Sherlock G., Rees C.A., Hernandez-Boussard T., Ball C.A., Sherlock G., Hernandez-Boussard T., Ball C.A., Sherlock G., Ball C.A., Sherlock G., Sherlock G. Caryoscope: An Open Source Java application for viewing microarray data in a genomic context. BMC Bioinformatics. 2004;5:151. doi: 10.1186/1471-2105-5-151. - DOI - PMC - PubMed
-
- Bond U., Neal C., Donnelly D., James T.C., Neal C., Donnelly D., James T.C., Donnelly D., James T.C., James T.C. Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridisation. Curr. Genet. 2004;45:360–370. - PubMed
-
- Bozdech Z., Zhu J., Joachimiak M.P., Cohen F.E., Pulliam B., DeRisi J.L., Zhu J., Joachimiak M.P., Cohen F.E., Pulliam B., DeRisi J.L., Joachimiak M.P., Cohen F.E., Pulliam B., DeRisi J.L., Cohen F.E., Pulliam B., DeRisi J.L., Pulliam B., DeRisi J.L., DeRisi J.L. Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol. 2003;4:R9. doi: 10.1186/gb-2003-4-2-r9. - DOI - PMC - PubMed
-
- Byrnes J.K., Morris G.P., Li W.H., Morris G.P., Li W.H., Li W.H. Reorganization of adjacent gene relationships in yeast genomes by whole-genome duplication and gene deletion. Mol. Biol. Evol. 2006;23:1136–1143. - PubMed
Publication types
MeSH terms
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases