Profiling SLCO and SLC22 genes in the NCI-60 cancer cell lines to identify drug uptake transporters
- PMID: 18790787
- PMCID: PMC2597359
- DOI: 10.1158/1535-7163.MCT-08-0539
Profiling SLCO and SLC22 genes in the NCI-60 cancer cell lines to identify drug uptake transporters
Abstract
Molecular and pharmacologic profiling of the NCI-60 cell panel offers the possibility of identifying pathways involved in drug resistance or sensitivity. Of these, decreased uptake of anticancer drugs mediated by efflux transporters represents one of the best studied mechanisms. Previous studies have also shown that uptake transporters can influence cytotoxicity by altering the cellular uptake of anticancer drugs. Using quantitative real-time PCR, we measured the mRNA expression of two solute carrier (SLC) families, the organic cation/zwitterion transporters (SLC22 family) and the organic anion transporters (SLCO family), totaling 23 genes in normal tissues and the NCI-60 cell panel. By correlating the mRNA expression pattern of the SLCO and SLC22 family member gene products with the growth-inhibitory profiles of 1,429 anticancer drugs and drug candidate compounds tested on the NCI-60 cell lines, we identified SLC proteins that are likely to play a dominant role in drug sensitivity. To substantiate some of the SLC-drug pairs for which the SLC member was predicted to be sensitizing, follow-up experiments were performed using engineered and characterized cell lines overexpressing SLC22A4 (OCTN1). As predicted by the statistical correlations, expression of SLC22A4 resulted in increased cellular uptake and heightened sensitivity to mitoxantrone and doxorubicin. Our results indicate that the gene expression database can be used to identify SLCO and SLC22 family members that confer sensitivity to cancer cells.
Figures
References
-
- Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–627. - PubMed
-
- Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58. - PubMed
-
- Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol. 1999;39:361–398. - PubMed
-
- Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219–234. - PubMed
-
- Szakacs G, Annereau JP, Lababidi S, et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell. 2004;6:129–137. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
