Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec;65(12):935-44.
doi: 10.1002/cm.20315.

Inflammatory cytokines augments TGF-beta1-induced epithelial-mesenchymal transition in A549 cells by up-regulating TbetaR-I

Affiliations

Inflammatory cytokines augments TGF-beta1-induced epithelial-mesenchymal transition in A549 cells by up-regulating TbetaR-I

Xiangde Liu. Cell Motil Cytoskeleton. 2008 Dec.

Abstract

Epithelial-mesenchymal transition (EMT) is believed to play an important role in fibrosis and tumor invasion. EMT can be induced in vitro cell culture by various stimuli including growth factors and matrix metalloproteinases. In this study, we report that cytomix (a mixture of IL-1beta, TNF-alpha and IFN-gamma) significantly enhances TGF-beta1-induced EMT in A549 cells as evidenced by acquisition of fibroblast-like cell shape, loss of E-cadherin, and reorganization of F-actin. IL-1beta or TNF-alpha alone can also augment TGF-beta1-induced EMT. However, a combination of IL-1beta and TNF-alpha or the cytomix is more potent to induce EMT. Cytomix, but not individual cytokine of IL-1beta, TNF-alpha or IFN-gamma, significantly up-regulates expression of TGF-beta receptor type I (TbetaR-I). Suppression of TbetaR-I, Smad2 or Smad3 by siRNA partially blocks EMT induction by cytomix plus TGF-beta1, indicating cytomix augments TGF-beta1-induced EMT through enhancing TbetaR-I and Smad signaling. These results indicate that inflammatory cytokines together with TGF-beta1 may play an important role in the development of fibrosis and tumor progress via the mechanism of epithelial-mesenchymal transition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources