Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone
- PMID: 18800067
- PMCID: PMC2873573
- DOI: 10.1038/npp.2008.142
Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone
Abstract
Stress and anxiety are mainly regulated by amygdala and hypothalamic circuitries involving several neurotransmitter systems and providing physiological responses to peripheral organs via the hypothalamic-pituitary-adrenal axis and other pathways. The role of endogenous opioid peptides in this process is largely unknown. Here we show for the first time that anxiolytic parameters of explorative behavior in mice lacking prodynorphin were increased 2-4-fold in the open field, the elevated plus maze and the light-dark test. Consistent with this, treatment of wild-type mice with selective kappa-opioid receptor antagonists GNTI or norbinaltorphimine showed the same effects. Furthermore, treatment of prodynorphin knockout animals with U-50488H, a selective kappa-opioid receptor agonist, fully reversed their anxiolytic phenotype. These behavioral data are supported by an approximal 30% reduction in corticotropin-releasing hormone (CRH) mRNA expression in the hypothalamic paraventricular nucleus and central amygdala and an accompanying 30-40% decrease in corticosterone serum levels in prodynorphin knockout mice. Although stress-induced increases in corticosterone levels were attenuated in prodynorphin knockout mice, they were associated with minor increases in depression-like behavior in the tail suspension and forced swim tests. Taken together, our data suggest a pronounced impact of endogenous prodynorphin-derived peptides on anxiety, but not stress coping ability and that these effects are mediated via kappa-opioid receptors. The delay in the behavioral response to kappa-opioid receptor agonists and antagonist treatment suggests an indirect control level for the action of dynorphin, probably by modulating the expression of CRH or neuropeptide Y, and subsequently influencing behavior.
Figures
References
-
- Aguiar MS, Brandao ML. Effects of microinjections of the neuropeptide substance P in the dorsal periaqueductal gray on the behaviour of rats in the plus-maze test. Physiol Behav. 1996;60:1183–1186. - PubMed
-
- Bachli H, Steiner MA, Habersetzer U, Wotjak CT. Increased water temperature renders single-housed C57BL/6J mice susceptible to antidepressant treatment in the forced swim test. Behav Brain Res. 2008;187:67–71. - PubMed
-
- Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE, et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet. 2000;24:410–414. - PubMed
-
- Bilkei-Gorzo A, Racz I, Michel K, Mauer D, Zimmer A, Klingmuller D, et al. Control of hormonal stress reactivity by the endogenous opioid system. Psychoneuroendocrinology. 2008;33:425–436. - PubMed
-
- Brunello N, Blier P, Judd LL, Mendlewicz J, Nelson CJ, Souery D, et al. Noradrenaline in mood and anxiety disorders: basic and clinical studies. Int Clin Psychopharmacol. 2003;18:191–202. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
